The subvariety lattice for representable idempotent commutative residuated lattices

被引:8
作者
Olson, Jeffrey S. [1 ]
机构
[1] Norwich Univ, Dept Math, Northfield, VT 05663 USA
关键词
residuated lattice; representable; variety; subvariety;
D O I
10.1007/s00012-012-0167-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
RICRL denotes the variety of commutative residuated lattices which have an idempotent monoid operation and are representable in the sense that they are subdirect products of linearly ordered algebras. It is shown that the subvariety lattice of RICRL is countable, despite its complexity and in contrast to several varieties of closely related algebras.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 15 条
[1]   The finite embeddability property for residuated lattices, pocrims and BCK-algebras [J].
Blok, WJ ;
van Alten, CJ .
ALGEBRA UNIVERSALIS, 2002, 48 (03) :253-271
[2]  
Davey B.A, 1979, HOUSTON J MATH, V5, P183
[3]   Minimal varieties of residuated lattices [J].
Galatos, N .
ALGEBRA UNIVERSALIS, 2005, 52 (2-3) :215-239
[4]  
Galatos N., 2003, THESIS VANDERBILT U
[5]  
Galatos N., 2007, Residuated Lattices: An Algebraic Glimpse at Substructural Logics
[6]   The structure of commutative residuated lattices [J].
Hart, JB ;
Rafter, L ;
Tsinakis, C .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2002, 12 (04) :509-524
[7]  
Higman G., 1952, Proc. London Math. Soc., V2, P326
[8]  
Horcik R., STUDIA LOGI IN PRESS
[9]  
Kohler P., 1975, MITT MATH SEM GIESSE, V116
[10]   SUPER-LUKASIEWICZ PROPOSITIONAL LOGICS [J].
KOMORI, Y .
NAGOYA MATHEMATICAL JOURNAL, 1981, 84 (DEC) :119-133