A KSOM based neural network model for classifying the epilepsy using adjustable analytic wavelet transform

被引:15
作者
Ashokkumar, S. R. [1 ]
MohanBabu, G. [1 ]
Anupallavi, S. [1 ]
机构
[1] SSM Inst Engn & Technol, Dept Elect & Commun Engn, Dindigul, India
关键词
Epilepsy; Electroencephalogram (EEG); Adjustable analytic wavelet transform (AAWT); Fractal dimension; Kohonen self-organizing network map (KSOM); SEIZURE DETECTION; EEG SIGNALS; AUTOMATIC DETECTION; SPIKE DETECTION; TIME-SERIES; CLASSIFICATION; PREDICTION; DIAGNOSIS;
D O I
10.1007/s11042-019-7359-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Epilepsy is a nervous disorder occurring in the cerebral cortex location of the brain which is caused by irregular harmonization of neurons. Since the existence of this disorder is between the neurons, it is tedious to diagnose correctly. Research works of epilepsy mostly done on an Electroencephalogram (EEG) signals for analyzing the neuron activity of the brain during seizures. Analyzing the continuing EEG reports manually for a patient affected by epilepsy is time-consuming, and it needs a large storage volume. The proposed paper is based on a unique method for detecting epileptic seizures by Adjustable Analytic Wavelet Transform (AAWT). This work is also focused on testing the practicability of utilizing the Kohonen network maps for predicting the dynamics of the brain states in the form of the trajectory which may provide the occurrence of the seizure event. AAWT is applied on each EEG signal to decompose EEG signals into the sub-band signals. The fractal dimension is applied to these sub-bands signals as a discriminating feature due to its nonlinear chaotic trait. The received solutions are fed into Kohonen self-organizing network map (KSOM) to get a stable performance rate for the categorization of an epileptic seizure. The results proved that the introduced methodology achieved 98.72% sensitivity, 93.90% specificity, 93.03% selectivity, and 94.12% efficiency than the existing models and provided promising classification accuracy.
引用
收藏
页码:10077 / 10098
页数:22
相关论文
共 85 条
[1]   Use of the fractal dimension for the analysis of electroencephalographic time series [J].
Accardo A. ;
Affinito M. ;
Carrozzi M. ;
Bouquet F. .
Biological Cybernetics, 1997, 77 (5) :339-350
[2]   Automated EEG analysis of epilepsy: A review [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Swapna, G. ;
Martis, Roshan Joy ;
Suri, Jasjit S. .
KNOWLEDGE-BASED SYSTEMS, 2013, 45 :147-165
[3]   AUTOMATED DIAGNOSIS OF EPILEPSY USING CWT, HOS AND TEXTURE PARAMETERS [J].
Acharya, U. Rajendra ;
Yanti, Ratna ;
Wei, Zheng Jia ;
Krishnan, M. Muthu Rama ;
Hong, Tan Jen ;
Martis, Roshan Joy ;
Min, Lim Choo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)
[4]   Epileptic EEG detection using the linear prediction error energy [J].
Altunay, Semih ;
Telatar, Ziya ;
Erogul, Osman .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) :5661-5665
[5]   Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients [J].
Andrzejak, Ralph G. ;
Schindler, Kaspar ;
Rummel, Christian .
PHYSICAL REVIEW E, 2012, 86 (04)
[6]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[7]  
[Anonymous], 2011, Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields
[8]  
[Anonymous], INT MULT
[9]  
[Anonymous], INT J SCI RES
[10]  
[Anonymous], EEG PRATICA CLFNICA