Comment on "Fermionic entanglement ambiguity in noninertial frames"

被引:24
作者
Bradler, Kamil [1 ]
Jauregui, Rocio [2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2A7, Canada
[2] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City 01000 20, DF, Mexico
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 01期
关键词
D O I
10.1103/PhysRevA.85.016301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this Comment we show that the ambiguity of entropic quantities calculated by Montero and Martin-Martinez [Phys. Rev. A 83, 062323 (2011)] for fermionic fields in the context of the Unruh effect is not related to the properties of anticommuting fields, as claimed therein, but rather to wrong mathematical manipulations with them and not taking into account a fundamental superselection rule of quantum field theory.
引用
收藏
页数:2
相关论文
共 13 条
[1]  
[Anonymous], 1976, The Theory of Photons and Electrons. The Relativistic Quantum Field Theory of Charged Particles with Spin One-half
[2]   Entanglement in fermionic systems [J].
Banuls, Mari-Carmen ;
Cirac, J. Ignacio ;
Wolf, Michael M. .
PHYSICAL REVIEW A, 2007, 76 (02)
[3]  
Bradler K., ARXIV11085553
[4]   Capacities of Grassmann channels [J].
Bradler, Kamil ;
Jochym-O'Connor, Tomas ;
Jauregui, Rocio .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (06)
[5]   Entanglement and tensor product decomposition for two fermions [J].
Caban, P ;
Podlaski, K ;
Rembielinski, J ;
Smolinski, KA ;
Walczak, Z .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (06) :L79-L86
[6]   The algebra of Grassmann canonical anticommutation relations and its applications to fermionic systems [J].
Keyl, Michael ;
Schlingemann, Dirk-M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[7]  
Klimyk A., 1997, QUANTUM GROUPS THEIR
[8]  
Majid S., 1995, Foundations of Quantum Group Theory
[9]   Fermionic entanglement ambiguity in noninertial frames [J].
Montero, Miguel ;
Martin-Martinez, Eduardo .
PHYSICAL REVIEW A, 2011, 83 (06)
[10]   On separable states for composite systems of distinguishable fermions [J].
Moriya, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14) :3753-3762