Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties

被引:18
作者
Ashcheulov, P. [1 ]
Taylor, A. [1 ]
Zivcova, Z. Vlckova [2 ]
Hubik, P. [1 ]
Honolka, J. [1 ]
Vondracek, M. [1 ]
Remzova, M. [2 ]
Kopecek, J. [1 ]
Klimsa, L. [1 ]
Lorincik, J. [3 ]
Davydova, M. [1 ]
Remes, Z. [1 ]
Kohout, M. [1 ]
Beltran, A. M. [4 ]
Mortet, V. [1 ,5 ]
机构
[1] Czech Acad Sci, Inst Phys, Slovance 2, Prague 18221, Czech Republic
[2] Czech Acad Sci, J Heyrovsky Inst Phys Chem, Dolejskova 3, Prague 18223 8, Czech Republic
[3] Res Ctr Rez, Husinec Rez, Czech Republic
[4] Univ Seville, Escuela Politecn Super, Dept Ingn & Ciencia Mat & Transporte, Seville, Spain
[5] Czech Tech Univ, Fac Biomed Engn, Sitna Sq 3105, Kladno 27201, Czech Republic
关键词
Transparent conductive electrode; Boron doped diamond; BDD; Electrical conductivity; Thin film coating; CHEMICAL-VAPOR-DEPOSITION; LARGE-AREA DEPOSITION; PLASMA CVD; MICROWAVE; GROWTH; OPTIMIZATION; ELECTRODES; SURFACES; SYSTEMS; GAS;
D O I
10.1016/j.apmt.2020.100633
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Transparent conductive electrodes are principal components in various optoelectronic devices and technologies. As such, diamond coatings in the form of electrically conductive thin films are envisioned to provide advantageous chemical and mechanical characteristics/stability in a variety of modern technologies including optoelectronics, biosensing, electrochemical and micromechanical systems. However, deposition of electrically conductive polycrystalline diamond coatings for such applications is currently a challenging task, since temperatures above 600 degrees C are usually required to ensure good diamond layer quality, which in turn limits the selection of substrates, to materials capable of withstanding exposure to high temperatures. In the present work, we investigate routes toward enhancement of electrical characteristics of nanocrystalline boron-doped diamond (BDD) films fabricated at low temperatures via chemical vapour deposition. We found that post-growth processing of BDD layers enhances their electrical properties, which otherwise are dependent on the employed deposition temperature regime. Finally, we show that integration of an electrically conductive Ti grid opens a route for fabrication of highly transparent and conductive composite nanocrystalline BDD electrodes over large areas at temperatures as low as 250 degrees C. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Boron doped diamond electrode for the wastewater treatment [J].
Alfaro, MAQ ;
Ferro, S ;
Martínez-Huitle, CA ;
Vong, YM .
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2006, 17 (02) :227-236
[2]   Thin polycrystalline diamond films protecting zirconium alloys surfaces: From technology to layer analysis and application in nuclear facilities [J].
Ashcheulov, P. ;
Skoda, R. ;
Skarohlid, J. ;
Taylor, A. ;
Fekete, L. ;
Fendrych, F. ;
Vega, R. ;
Shao, L. ;
Kalvoda, L. ;
Vratislav, S. ;
Chab, V. ;
Horakova, K. ;
Kusova, K. ;
Klimsa, L. ;
Kopecek, J. ;
Sajdl, P. ;
Macak, J. ;
Johnson, S. ;
Kratochvilova, I. .
APPLIED SURFACE SCIENCE, 2015, 359 :621-628
[3]   Conductivity of boron-doped polycrystalline diamond films: influence of specific boron defects [J].
Ashcheulov, P. ;
Sebera, J. ;
Kovalenko, A. ;
Petrak, V. ;
Fendrych, F. ;
Nesladek, M. ;
Taylor, A. ;
Zivcova, Z. Vlckova ;
Frank, O. ;
Kavan, L. ;
Dracinsky, M. ;
Hubik, P. ;
Vacik, J. ;
Kraus, I. ;
Kratochvilova, I. .
EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (10)
[4]  
Ashcheulov P., 2014, PHYS STATUS SOLIDI A, V12, P1
[5]   Nanocrystalline Boron-Doped Diamond as a Corrosion-Resistant Anode for Water Oxidation via Si Photoelectrodes [J].
Ashcheulov, Petr ;
Taylor, Andrew ;
Mortet, Vincent ;
Poruba, Ales ;
Le Formal, Florian ;
Krysova, Hana ;
Klementova, Mariana ;
Hubik, Pavel ;
Kopecek, Jaromir ;
Lorincik, Jan ;
Yum, Jun-Ho ;
Kratochvilova, Irena ;
Kavan, Ladislav ;
Sivula, Kevin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (35) :29552-29564
[6]   Optically transparent composite diamond/Ti electrodes [J].
Ashcheulov, Petr ;
Taylor, Andrew ;
More-Chevalier, Joris ;
Kovalenko, Alexander ;
Remes, Zdenek ;
Drahokoupil, Jan ;
Hubik, Pavel ;
Fekete, Ladislav ;
Klimsa, Ladislav ;
Kopecek, Jaromir ;
Remiasova, Jarmila ;
Kohout, Michal ;
Frank, Otakar ;
Kavan, Ladislav ;
Mortet, Vincent .
CARBON, 2017, 119 :179-189
[7]   Growth processes of nanocrystalline diamond films in microwave cavity and distributed antenna array systems: A comparative study [J].
Baudrillart, B. ;
Nave, A. S. C. ;
Hamann, S. ;
Benedic, F. ;
Lombardi, G. ;
van Helden, J. H. ;
Roepcke, J. ;
Achard, J. .
DIAMOND AND RELATED MATERIALS, 2017, 71 :53-62
[8]   A carbon science perspective in 2018: Current achievements and future challenges [J].
Bianco, Alberto ;
Chen, Yongsheng ;
Chen, Yuan ;
Ghoshal, Debjit ;
Hurt, Robert H. ;
Kim, Yoong Ahm ;
Koratkar, Nikhil ;
Meunier, Vincent ;
Terrones, Mauricio .
CARBON, 2018, 132 :785-801
[9]   The CVD of nanodiamond materials [J].
Butler, James E. ;
Sumant, Anirudha V. .
CHEMICAL VAPOR DEPOSITION, 2008, 14 (7-8) :145-160
[10]   A review of nucleation, growth and low temperature synthesis of diamond thin films [J].
Das, D. ;
Singh, R. N. .
INTERNATIONAL MATERIALS REVIEWS, 2007, 52 (01) :29-64