On the nonlinear Schrodinger dynamics on S2

被引:9
作者
Banica, V [1 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2004年 / 83卷 / 01期
关键词
nonlinear Schrodinger; Eigenfunctions; ansatz;
D O I
10.1016/S0021-7824(03)00059-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the evolution of the highest weight spherical harmonics by the nonlinear Schrodinger equation on S-2. Sharp estimates are proved for the dynamics parallel and orthogonally to the initial data. Also, we give an ansatz of the solution with respect to the spherical harmonics. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:77 / 98
页数:22
相关论文
共 16 条
  • [1] Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
  • [2] Two singular dynamics of the nonlinear Schrodinger equation on a plane domain
    Burq, N
    Gerard, P
    Tzvetkov, N
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) : 1 - 19
  • [3] Burq N, 2002, MATH RES LETT, V9, P323
  • [4] BURQ N, IN PRESS AM J MATH
  • [5] THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS
    CAZENAVE, T
    WEISSLER, FB
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) : 807 - 836
  • [6] CHRIST M, 2002, ASYMPTOTIC FREQUENCY
  • [7] THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR SCHRODINGER-EQUATION REVISITED
    GINIBRE, J
    VELO, G
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (04): : 309 - 327
  • [8] Hobson E., 1955, THEORY SPHERICAL ELL
  • [9] KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
  • [10] On the ill-posedness of some canonical dispersive equations
    Kenig, CE
    Ponce, G
    Vega, L
    [J]. DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) : 617 - 633