Constant mean curvature surfaces of any positive genus

被引:7
作者
Kilian, M [1 ]
Kobayashi, SP
Rossman, W
Schmitt, N
机构
[1] Univ Bath, Bath BA2 7AY, Avon, England
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[3] Kobe Univ, Dept Math, Rokko Kobe 6578501, Japan
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2005年 / 72卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/S0024610705006472
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper shows the existence of several new families of noncompact constant mean curvature surfaces: (i) singly punctured surfaces of arbitrary genus g >= 1, (ii) doubly punctured tori, and (iii) doubly periodic surfaces with Delaunay ends.
引用
收藏
页码:258 / 272
页数:15
相关论文
共 15 条
[1]   A criterion for the existence of a parabolic stable bundle of rank two over the projective line [J].
Biswas, I .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (05) :523-533
[2]   ALL CONSTANT MEAN-CURVATURE TORI IN R3,S-3,H-3 IN TERMS OF THETA-FUNCTIONS [J].
BOBENKO, AI .
MATHEMATISCHE ANNALEN, 1991, 290 (02) :209-245
[3]   Construction of non-simply connected CMC surfaces via dressing [J].
Dorfmeister, J ;
Haak, G .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (02) :335-364
[4]   Weierstrass type representation of harmonic maps into symmetric spaces [J].
Dorfmeister, J ;
Pedit, F ;
Wu, H .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 1998, 6 (04) :633-668
[5]   TOPOLOGICAL COMPONENTS OF SPACES OF REPRESENTATIONS [J].
GOLDMAN, WM .
INVENTIONES MATHEMATICAE, 1988, 93 (03) :557-607
[6]  
Grosse-Brauckmann K, 2003, J REINE ANGEW MATH, V564, P35
[7]   COMPLETE CONSTANT MEAN-CURVATURE SURFACES IN EUCLIDEAN 3-SPACE [J].
KAPOULEAS, N .
ANNALS OF MATHEMATICS, 1990, 131 (02) :239-330
[8]   Dressing CMC n-noids [J].
Kilian, M ;
Schmitt, N ;
Sterling, I .
MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (03) :501-519
[9]  
KILIAN M, MATHDG0403366
[10]  
KOREVAAR NJ, 1989, J DIFFER GEOM, V30, P465