MINIMAL GEODESICS ON GL(n) FOR LEFT-INVARIANT, RIGHT-O(n)-INVARIANT RIEMANNIAN METRICS

被引:8
作者
Martin, Robert J. [1 ]
Neff, Patrizio [1 ]
机构
[1] Univ Duisburg Essen, Lehrstuhl Nichtlineare Anal & Modellierung, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany
关键词
Geodesics; geodesic distance; general linear group; left-invariance; isotropy; STRAIN MEASURES; MINIMIZATION; PROPERTY; GEOMETRY;
D O I
10.3934/jgm.2016010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an easy approach to the geodesic distance on the general linear group GL(n) for left-invariant Riemannian metrics which are also right-O(n)-invariant. The parameterization of geodesic curves and the global existence of length minimizing geodesics are deduced using simple methods based on the calculus of variations and classical analysis only. The geodesic distance is discussed for some special cases and applications towards the theory of nonlinear elasticity are indicated.
引用
收藏
页码:323 / 357
页数:35
相关论文
共 24 条
  • [1] The left invariant metric in the general linear group
    Andruchow, E.
    Larotonda, G.
    Recht, L.
    Varela, A.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2014, 86 : 241 - 257
  • [2] [Anonymous], 2004, Analysis
  • [3] [Anonymous], 2008, Functions of matrices: theory and computation
  • [4] Bernstein DS, 2009, Matrix mathematics: theory, facts, and formulas, V2nd
  • [5] EMBEDDED GEODESIC PROBLEMS AND OPTIMAL CONTROL FOR MATRIX LIE GROUPS
    Bloch, Anthony M.
    Crouch, Peter E.
    Nordkvist, Nikolaj
    Sanyal, Amit K.
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (02) : 197 - 223
  • [6] Ciarlet PhilippeG., 1988, Studies in Mathematics and its Applications, VI
  • [8] DO CARMO M.P.A., 1992, Riemannian Geometry, DOI DOI 10.1007/978-1-4757-2201-7
  • [9] Eschenburg J.-H., 2007, DIFFERENTIALGEOMETRI
  • [10] Gallot S., 1990, Riemannian Geometry, V2