Quintic complex Ginzburg-Landau model for ring fiber lasers

被引:147
作者
Komarov, A [1 ]
Leblond, H [1 ]
Sanchez, F [1 ]
机构
[1] Univ Angers, UMR 6136, Lab POMA, F-49000 Angers, France
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevE.72.025604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of a fiber ring laser mode locked by nonlinear polarization rotation is reduced to a quintic complex Ginzburg-Landau (CGLQ) equation. The coefficients of the equation are explicitly given as functions of the physical parameters of the laser, especially the orientation of the phase plates. Then known results about analytic solutions, stability of pulselike solutions, and bound states of the CGLQ equation are examined from the point of view of their dependence with regard to the physical parameters.
引用
收藏
页数:4
相关论文
共 25 条
[1]   SOLITON SINGULARITY IN THE SYSTEM WITH NONLINEAR GAIN [J].
AFANASJEV, VV .
OPTICS LETTERS, 1995, 20 (07) :704-706
[2]   Stability of bound states of pulses in the Ginzburg-Landau equations [J].
Afanasjev, VV ;
Malomed, BA ;
Chu, PL .
PHYSICAL REVIEW E, 1997, 56 (05) :6020-6025
[3]   NOVEL ARBITRARY-AMPLITUDE SOLITON-SOLUTIONS OF THE CUBIC-QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
AKHMEDIEV, N ;
AFANASJEV, VV .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2320-2323
[4]   Interaction of dual-frequency pulses in passively mode-locked lasers [J].
Akhmediev, N ;
Rodrigues, AS ;
Town, GE .
OPTICS COMMUNICATIONS, 2001, 187 (4-6) :419-426
[5]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[6]   Stable soliton pairs in optical transmission lines and fiber lasers [J].
Akhmediev, NN ;
Ankiewicz, A ;
Soto-Crespo, JM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1998, 15 (02) :515-523
[7]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[8]   FORMATIONS OF SPATIAL PATTERNS AND HOLES IN THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
BEKKI, N ;
NOZAKI, K .
PHYSICS LETTERS A, 1985, 110 (03) :133-135
[9]   LINEARITY INSIDE NONLINEARITY - EXACT-SOLUTIONS TO THE COMPLEX GINZBURG-LANDAU EQUATION [J].
CONTE, R ;
MUSETTE, M .
PHYSICA D, 1993, 69 (1-2) :1-17
[10]   STRUCTURES FOR ADDITIVE PULSE MODE-LOCKING [J].
HAUS, HA ;
FUJIMOTO, JG ;
IPPEN, EP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (10) :2068-2076