Convergence of the parabolic complex Monge-Ampere equation on compact Hermitian manifolds

被引:0
作者
Gill, Matt [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
KAHLER-MANIFOLDS; INTRINSIC NORMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove C-infinity convergence for suitably normalized solutions of the parabolic complex Monge-Ampere equation on compact Hermitian manifolds. This provides a parabolic proof of a recent result of Tosatti and Weinkove.
引用
收藏
页码:277 / 303
页数:27
相关论文
共 29 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]  
[Anonymous], 1982, Comm. Pure Appl. Math.
[3]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[4]  
[Anonymous], GLOBAL ANAL
[5]  
AUBIN T, 1978, B SCI MATH, V102, P63
[6]   VARIATIONAL PROPERTIES OF THE COMPLEX MONGE-AMPERE EQUATION .2. INTRINSIC NORMS [J].
BEDFORD, E ;
TAYLOR, BA .
AMERICAN JOURNAL OF MATHEMATICS, 1979, 101 (05) :1131-1166
[7]  
Calabi E., 1957, On Kahler manifolds with vanishing canonical class, P78
[9]  
Chen XX, 2000, J DIFFER GEOM, V56, P189
[10]  
CHERRIER P, 1987, B SCI MATH, V111, P343