In vitro response of MC3T3-E1 preosteoblasts within three-dimensional apatite-coated PLGA scaffolds

被引:106
作者
Chou, YF
Dunn, JCY
Wu, BM
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Surg, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Weintraub Ctr Reconstruct Biotechnol, Los Angeles, CA 90095 USA
关键词
hydroxylapatite; tissue engineering; scaffold; osteogenesis; biomimetic;
D O I
10.1002/jbm.b.30261
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biomimetic apatites have been reported to promote osteogenic activities in numerous in vivo and in vitro models, but the precise mechanism by which the apatite micro-environment promotes such activities is not well understood. Such mechanistic studies require reproducible model systems that are relevant to tissue engineering practices. Although two-dimensional (2D) apatite-coated polystyrene culture dishes provide practicality and reproducibility, they do not simulate the effects of the three-dimensional (D) microenvironment and degrading polymeric substrates. A simple 3D model system to address these relevant effects, and its utilization in the investigation of apatite-promoted osteoblastic differentiation in vitro is reported in this paper. Apatite coating was achieved by sequentially immersing poly(lactide-co-glycolide) (PLGA) scaffolds into different simulated body fluids (SBF). SEM, EDX, FTIR, TEM electron diffraction confirmed the apatite coating to comprise of calcium-deficient carbonated hydroxyapatite crystals. While both apatite-coated and noncoated PLGA scaffolds supported MC3T3-E1 attachment, spreading, and proliferation, significant differences in osteoblastic differentiation were observed. Relative to noncoated controls, quantitative real-time PCR revealed significant apatite-associated suppression of alkaline phosphatase (ALP), early upregulation of osteopontin (OPN) at 3 days, and upregulation of osteocalcin (OCN) and bone sialoprotein (BSP) at 4 weeks. In summary, apatite-promoted osteoblastic differentiation can be observed in a 3D model system that is relevant to tissue engineering. (c) 2005 Wiley Periodicals. Inc.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 28 条