NEW ESTIMATES FOR A TIME-DEPENDENT SCHRODINGER EQUATION

被引:45
作者
Beceanu, Marius [1 ]
机构
[1] Ecole Hautes Etud Sci Sociales, Ctr Anal & Math Sociales, F-75006 Paris, France
关键词
SOBOLEV NORMS; SCATTERING-THEORY; DECAY; WAVE; OPERATORS; GROWTH; BOUNDS;
D O I
10.1215/00127094-1433394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper establishes new estimates for linear Schrodinger equations in R-3 with time-dependent potentials. Some of the results are new even in the time-independent case, and all are shown to hold for potentials in scaling-critical, translation-invariant spaces. The proof of the time-independent results uses a novel method based on an abstract version of Wiener's theorem.
引用
收藏
页码:417 / 477
页数:61
相关论文
共 39 条
[1]  
Agmon S., 1975, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, V2, P151
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]  
BECEANU M, COMM MATH P IN PRESS
[4]  
BECEANU M, CRITICAL CTR S UNPUB
[5]  
Beceanu M, 2008, COMMUN MATH PHYS, V280, P145, DOI 10.1007/s00220-008-0427-3
[6]  
Bourgain J, 2003, LECT NOTES MATH, V1807, P99
[7]   On growth of Sobolev norms in linear Schrodinger equations with smooth time dependent potential [J].
Bourgain, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1999, 77 (1) :315-348
[8]   Growth of Sobolev norms in linear Schrodinger equations with quasi-periodic potential [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 204 (01) :207-247
[9]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[10]  
Burq N, 2004, INDIANA U MATH J, V53, P1665