Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects

被引:181
作者
Muhammad, Hassan [1 ,2 ]
Fuchs, Thomas J. [1 ,2 ,3 ,4 ]
De Cuir, Nicole [5 ,7 ]
De Moraes, Carlos G. [6 ]
Blumberg, Dana M. [6 ]
Liebmann, Jeffrey M. [6 ]
Ritch, Robert [8 ]
Hood, Donald C. [5 ,6 ]
机构
[1] Weill Cornell Med, Dept Physiol Biophys & Syst Biol, New York, NY USA
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Computat Biol, 1275 York Ave, New York, NY 10021 USA
[4] Mem Sloan Kettering Canc Ctr, Dept Pathol, 1275 York Ave, New York, NY 10021 USA
[5] Columbia Univ, Dept Psychol, 406 Schermerhorn Hall,1190 Amsterdam Ave,MC 5501, New York, NY 10027 USA
[6] Columbia Univ, Dept Ophthalmol, New York, NY 10027 USA
[7] Columbia Univ, Coll Phys & Surg, New York, NY USA
[8] New York Eye & Ear Infirm Mt Sinai, Einhorn Clin Res Ctr, New York, NY USA
关键词
machine learning; optical coherence tomography; detection; classification; image processing; PROGRESSION; HEALTHY; OCT;
D O I
10.1097/IJG.0000000000000765
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose:Existing summary statistics based upon optical coherence tomographic (OCT) scans and/or visual fields (VFs) are suboptimal for distinguishing between healthy and glaucomatous eyes in the clinic. This study evaluates the extent to which a hybrid deep learning method (HDLM), combined with a single wide-field OCT protocol, can distinguish eyes previously classified as either healthy suspects or mild glaucoma.Methods:In total, 102 eyes from 102 patients, with or suspected open-angle glaucoma, had previously been classified by 2 glaucoma experts as either glaucomatous (57 eyes) or healthy/suspects (45 eyes). The HDLM had access only to information from a single, wide-field (9x12mm) swept-source OCT scan per patient. Convolutional neural networks were used to extract rich features from maps derived from these scans. Random forest classifier was used to train a model based on these features to predict the existence of glaucomatous damage. The algorithm was compared against traditional OCT and VF metrics.Results:The accuracy of the HDLM ranged from 63.7% to 93.1% depending upon the input map. The retinal nerve fiber layer probability map had the best accuracy (93.1%), with 4 false positives, and 3 false negatives. In comparison, the accuracy of the OCT and 24-2 and 10-2 VF metrics ranged from 66.7% to 87.3%. The OCT quadrants analysis had the best accuracy (87.3%) of the metrics, with 4 false positives and 9 false negatives.Conclusions:The HDLM protocol outperforms standard OCT and VF clinical metrics in distinguishing healthy suspect eyes from eyes with early glaucoma. It should be possible to further improve this algorithm and with improvement it might be useful for screening.
引用
收藏
页码:1086 / 1094
页数:9
相关论文
共 20 条
[1]   Shape quantization and recognition with randomized trees [J].
Amit, Y ;
Geman, D .
NEURAL COMPUTATION, 1997, 9 (07) :1545-1588
[2]  
[Anonymous], 2010, R: A language and environment for statistical computing
[3]   Identifying "Preperimetric'' Glaucoma in Standard Automated Perimetry Visual Fields [J].
Asaoka, Ryo ;
Iwase, Aiko ;
Hirasawa, Kazunori ;
Murata, Hiroshi ;
Araie, Makoto .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (12) :7814-7820
[4]   Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT [J].
Barella, Kleyton Arlindo ;
Costa, Vital Paulino ;
Vidotti, Vanessa Goncalves ;
Silva, Fabricio Reis ;
Dias, Marcelo ;
Gomi, Edson Satoshi .
JOURNAL OF OPHTHALMOLOGY, 2013, 2013
[5]   Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression [J].
Belghith, Akram ;
Bowd, Christopher ;
Medeiros, Felipe A. ;
Balasubramanian, Madhusudhanan ;
Weinreb, Robert N. ;
Zangwill, Linda M. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2015, 64 (02) :105-115
[6]   Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT [J].
Bizios, Dimitrios ;
Heijl, Anders ;
Hougaard, Jesper Leth ;
Bengtsson, Boel .
ACTA OPHTHALMOLOGICA, 2010, 88 (01) :44-52
[7]   Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes [J].
Bowd, Christopher ;
Hao, Jiucang ;
Tavares, Ivan M. ;
Medeiros, Felipe A. ;
Zangwill, Linda M. ;
Lee, Te-Won ;
Sample, Pamela A. ;
Weinreb, Robert N. ;
Goldbaum, Michael H. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (03) :945-953
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Progression of Patterns (POP): A Machine Classifier Algorithm to Identify Glaucoma Progression in Visual Fields [J].
Goldbaum, Michael H. ;
Lee, Intae ;
Jang, Giljin ;
Balasubramanian, Madhusudhanan ;
Sample, Pamela A. ;
Weinreb, Robert N. ;
Liebmann, Jeffrey M. ;
Girkin, Christopher A. ;
Anderson, Douglas R. ;
Zangwill, Linda M. ;
Fredette, Marie-Josee ;
Jung, Tzyy-Ping ;
Medeiros, Felipe A. ;
Bowd, Christopher .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (10) :6557-6567