A case study of non-Fourier heat conduction using internal variables and GENERIC

被引:11
作者
Szucs, Matyas [1 ,2 ]
Pavelka, Michal [3 ]
Kovacs, Robert [1 ,2 ,4 ]
Fulop, Tamas [1 ,2 ]
Van, Peter [1 ,2 ,4 ]
Grmela, Miroslav [5 ]
机构
[1] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Energy Engn, Budapest, Hungary
[2] Montavid Thermodynam Res Grp, Budapest, Hungary
[3] Charles Univ Prague, Math Inst, Fac Math, Prague, Czech Republic
[4] Inst Particle & Nucl Phys, Wigner Res Centre Phys, Dept Theoret Phys, Budapest, Hungary
[5] Ecole Polytech Montreal, Montreal, PQ, Canada
关键词
non-Fourier heat conduction; internal variables; GENERIC; entropy current multiplier; model reduction; 2ND SOUND; THERMAL-CONDUCTIVITY; GUYER-KRUMHANSL; COMPLEX FLUIDS; THERMODYNAMICS; ENTROPY; PROPAGATION; LEQUATION; DEVIATION; PRINCIPLE;
D O I
10.1515/jnet-2021-0022
中图分类号
O414.1 [热力学];
学科分类号
摘要
Applying simultaneously the methodology of non-equilibrium thermodynamics with internal variables (NET-IV) and the framework of General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC), we demonstrate that, in heat conduction theories, entropy current multipliers can be interpreted as relaxed state variables. Fourier's law and its various extensions-the Maxwell-Cattaneo-Vernotte, Guyer-Krumhansl, Jeffreys type, Ginzburg-Landau (Allen-Cahn) type and ballistic-diffusive heat conduction equations-are derived in both formulations. Along these lines, a comparison of NET-IV and GENERIC is also performed. Our results may pave the way for microscopic/multiscale understanding of beyond-Fourier heat conduction and open new ways for numerical simulations of heat conduction problems.
引用
收藏
页码:31 / 60
页数:30
相关论文
共 68 条
[1]  
[Anonymous], 1929, The Earth: Its Origin, History and Physical Constitution
[2]  
[Anonymous], 1997, Thermodynamics and Rheology
[3]   Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory [J].
Asszonyi, Csaba ;
Fueloep, Tamas ;
Van, Peter .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2015, 27 (06) :971-986
[4]   New perspectives for modelling ballistic-diffusive heat conduction [J].
Balassa, G. ;
Rogolino, P. ;
Rieth, A. ;
Kovacs, R. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2021, 33 (05) :2007-2026
[5]  
Berezovski A., 2017, INTERNAL VARIABLES T
[6]   Energy-momentum-entropy consistent numerical methods for large-strain thermoelasticity relying on the GENERIC formalism [J].
Betsch, Peter ;
Schiebl, Mark .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (12) :1216-1244
[7]   Deviation from the Fourier law in room-temperature heat pulse experiments [J].
Both, Soma ;
Czel, Balazs ;
Fulop, Tamas ;
Grof, Gyula ;
Gyenis, Akos ;
Kovacs, Robert ;
Van, Peter ;
Verhas, Jozsef .
JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2016, 41 (01) :41-48
[8]   ON ONSAGER PRINCIPLE OF MICROSCOPIC REVERSIBILITY [J].
CASIMIR, HBG .
REVIEWS OF MODERN PHYSICS, 1945, 17 (2-3) :343-350
[9]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[10]  
deGroot SR., 1963, Non-Equilibrium Thermodynamics, DOI DOI 10.1103/PhysRevE.74.046305