Embedding nearly-spanning bounded degree trees

被引:36
作者
Alon, Noga [1 ,2 ]
Krivelevich, Michael [4 ]
Sudakov, Benny [3 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math & Comp Sci, IL-69978 Tel Aviv, Israel
[2] IAS, Princeton, NJ 08540 USA
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[4] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Dept Math, IL-69978 Tel Aviv, Israel
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00493-007-2182-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of maximum degree at most d on (1 - epsilon)n vertices, in terms of the expansion properties of G. As a result we show that for fixed d >= 2 and 0 < epsilon < 1, there exists a constant c = c(d, E) such that a random graph G(n, c/n) contains almost surely a copy of every tree T on (1 - epsilon)n vertices with maximum degree at most d. We also prove that if an (n, D, lambda)-graph G (i.e., a D-regular graph on n vertices all of whose eigenvalues, except the first one, are at most A in their absolute values) has large enough spectral gap D/lambda as a function of d and c, then G has a copy of every tree T as above.
引用
收藏
页码:629 / 644
页数:16
相关论文
共 18 条
[1]   THE LONGEST PATH IN A RANDOM GRAPH [J].
AJTAI, M ;
KOMLOS, J ;
SZEMEREDI, E .
COMBINATORICA, 1981, 1 (01) :1-12
[2]  
ALON N, 2001, P 5 INT WORKSH RAND, P170
[3]  
Alon N., 2004, The probabilistic method
[4]  
Bhatt S. N., 1989, SIAM J. Discrete Math, V2, P145
[5]   LONG PATHS IN SPARSE RANDOM GRAPHS [J].
BOLLOBAS, B .
COMBINATORICA, 1982, 2 (03) :223-228
[6]  
Bollobas B, 2001, RANDOM GRAPHS, V73
[7]  
Chung F. R. K., 1978, P 1976 HUNG C COMB, P213
[8]   GRAPHS WHICH CONTAIN ALL SMALL TREES [J].
CHUNG, FRK ;
GRAHAM, RL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 24 (01) :14-23
[9]  
CHUNG FRK, 1979, ANN NY ACAD SCI, V319, P136
[10]  
CHUNG FRK, 1983, P LOND MATH SOC, V27, P203