On maps preserving products of matrices

被引:14
作者
Catalano, Louisa [1 ]
Hsu, Samuel [2 ]
Kapalko, Regan [3 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Miami Univ, Dept Math, Oxford, OH 45056 USA
关键词
Maps preserving products; Jordan product; ZERO; ALGEBRAS; MAPPINGS; RINGS;
D O I
10.1016/j.laa.2018.10.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D be a division ring with characteristic different from 2, and let R = M-n(D). The first goal of this paper is to describe an additive map f : R -> R satisfying the identity f(x)f(y) = m for every x, y is an element of R such that xy = k, where m, k is an element of R are fixed invertible elements. Additionally, let M = M-n(C), the set of all n x n matrices with complex entries. We will describe a bijective linear map g : M -> M satisfying g(X) circle g(Y) = M whenever X circle Y = K for every X, Y is an element of M, where M, K is an element of M are fixed, and circle denotes the Jordan product. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 12 条
[1]  
[Anonymous], 1974, Linear Multilinear Algebra, DOI [10.1080/03081087408817029, DOI 10.1080/03081087408817029]
[2]  
Bresar M, 2007, P ROY SOC EDINB A, V137, P9
[3]   On maps characterized by action on equal products [J].
Catalano, Louisa .
JOURNAL OF ALGEBRA, 2018, 511 :148-154
[4]   On maps preserving products [J].
Chebotar, MA ;
Ke, WF ;
Lee, PH ;
Shiao, LS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2005, 48 (03) :355-369
[5]   On maps preserving square-zero matrices [J].
Chebotar, MA ;
Ke, WF ;
Lee, PH .
JOURNAL OF ALGEBRA, 2005, 289 (02) :421-445
[6]   Maps characterized by action on zero products [J].
Chebotar, MA ;
Ke, WF ;
Lee, PH .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (02) :217-228
[7]   On maps preserving zero Jordan products [J].
Chebotar, Mikhail A. ;
Ke, Wen-Fong ;
Lee, Pjek-Hwee ;
Zhang, Ruibin .
MONATSHEFTE FUR MATHEMATIK, 2006, 149 (02) :91-101
[8]  
Cui JL, 2002, B AUST MATH SOC, V65, P79
[9]  
Essannouni H., 1999, LINEAR ALGEBRA APPL, V291, P9
[10]   Characterizations of Jordan mappings on some rings and algebras through zero products [J].
Huang, Wenbo ;
Li, Jiankui ;
He, Jun .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02) :334-346