High Tensile Strength of Engineered β-Solenoid Fibrils via Sonication and Pulling

被引:7
作者
Peng, Zeyu [1 ]
Parker, Amanda S. [2 ]
Peralta, Maria D. R. [1 ]
Ravikumar, Krishnakumar M. [2 ]
Cox, Daniel L. [2 ]
Toney, Michael D. [1 ]
机构
[1] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
STEERED MOLECULAR-DYNAMICS; MECHANICAL-PROPERTIES; AMYLOID FIBRILS; STRAIN-RATE; ANTIFREEZE PROTEIN; FIBER; DNA; SIMULATION; NANOMATERIALS; BIOMATERIALS;
D O I
10.1016/j.bpj.2017.09.003
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present estimates of ultimate tensile strength (UTS) for two engineered beta-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 +/- 0.08 GPa. For fibrils formed from engineered R. inquisitor antifreeze protein, depending upon geometry, we estimate UTSs of 3.5 +/- 3.2-5.5 +/- 5.1 GPa for proteins with interfacial disulfide bonds, and 1.6 +/- 1.5-2.5 +/- 2.3 GPa for the reduced form. The large error bars for the R. inquisitor structures are intrinsic to the broad distribution of limiting scission lengths. Simulations provide pulling velocity-dependent UTSs increasing from 0.2 to 1 GPa in the available speed range, and 1.5 GPa extrapolated to the speeds expected in the sonication experiments. Simulations yield low-velocity values for the Young's modulus of 6.0 GPa. Without protein optimization, these mechanical parameters are similar to those of spider silk and Kevlar, but in contrast to spider silk, these proteins have a precisely known sequence-structure relationship.
引用
收藏
页码:1945 / 1955
页数:11
相关论文
共 49 条
[1]   Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains [J].
Ackbarow, Theodor ;
Chen, Xuefeng ;
Keten, Sinan ;
Buehler, Markus J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (42) :16410-16415
[2]   Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method [J].
Adamcik, Jozef ;
Lara, Cecile ;
Usov, Ivan ;
Jeong, Jae Sun ;
Ruggeri, Francesco S. ;
Dietler, Giovanni ;
Lashuel, Hilal A. ;
Hamley, Ian W. ;
Mezzenga, Raffaele .
NANOSCALE, 2012, 4 (15) :4426-4429
[3]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[4]  
[Anonymous], 2014, J VIS EXP JOVE
[5]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]  
Boyce B.L., 2007, The strain-rate sensitivity of high strength high-toughness steels / Sandia National Laboratories
[8]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[9]   TENSILE AND FATIGUE BEHAVIOR OF KEVLAR-49 (PRD-49) FIBER [J].
BUNSELL, AR .
JOURNAL OF MATERIALS SCIENCE, 1975, 10 (08) :1300-1308
[10]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)