Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector

被引:34
作者
Lei, Baiying [1 ]
Tan, Ee-Leng [3 ]
Chen, Siping [1 ]
Zhuo, Liu [1 ]
Li, Shengli [2 ]
Ni, Dong [1 ]
Wang, Tianfu [1 ]
机构
[1] Shenzhen Univ, Sch Med, Dept Biomed Engn,Guangdong Key Lab Biomed Measure, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen 518060, Guangdong, Peoples R China
[2] Nanfang Med Univ, Affiliated Shenzhen Maternal & Child Healthcare, Dept Ultrasound, Shenzhen, Peoples R China
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CLASSIFICATION;
D O I
10.1371/journal.pone.0121838
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.
引用
收藏
页数:20
相关论文
共 34 条
[11]  
Cuingnet R, 2013, I S BIOMED IMAGING, P768
[12]   Prostate Histopathology: Learning Tissue Component Histograms for Cancer Detection and Classification [J].
Gorelick, Lena ;
Veksler, Olga ;
Gaed, Mena ;
Gomez, Jose A. ;
Moussa, Madeleine ;
Bauman, Glenn ;
Fenster, Aaron ;
Ward, Aaron D. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (10) :1804-1818
[13]   Texture Classification by Texton: Statistical versus Binary [J].
Guo, Zhenhua ;
Zhang, Zhongcheng ;
Li, Xiu ;
Li, Qin ;
You, Jane .
PLOS ONE, 2014, 9 (02)
[14]   Aggregating Local Image Descriptors into Compact Codes [J].
Jegou, Herve ;
Perronnin, Florent ;
Douze, Matthijs ;
Sanchez, Jorge ;
Perez, Patrick ;
Schmid, Cordelia .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) :1704-1716
[15]   Trace Ratio Problem Revisited [J].
Jia, Yangqing ;
Nie, Feiping ;
Zhang, Changshui .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (04) :729-735
[16]  
Kumar R, 2009, PROC CVPR IEEE, P723, DOI 10.1109/CVPRW.2009.5206838
[17]   Localizing target structures in ultrasound video - A phantom study [J].
Kwitt, R. ;
Vasconcelos, N. ;
Razzaque, S. ;
Aylward, S. .
MEDICAL IMAGE ANALYSIS, 2013, 17 (07) :712-722
[18]  
Lazebnik S., COMPUTER VISION PATT, V2, P2169
[19]  
Lei B, 2014, P IEEE INT S BIOM IM
[20]  
Ni D, 2013, LECT NOTES COMPUT SC, V8198, P203, DOI 10.1007/978-3-642-41083-3_23