Experimental Analysis of Tunable Optical Spectral Imaging System Using a Grating in the Pupil Function

被引:0
作者
Javier Garcia-Diaz, F. [1 ]
Palillero-Sandoval, Omar [1 ]
Escobedo-Alatorre, J. Jesus [1 ]
Basurto-Pensado, Miguel A. [1 ]
Marquez-Aguilar, Pedro A. [1 ]
Zamudio-Lara, Alvaro [1 ]
Paul Zavala-De Paz, Jonny [2 ]
Antonio Marban-Salgado, Jose [1 ]
机构
[1] UAEM, Inst Res Pure & Appl Sci IICBA, Ctr Res Engn & Appl Sci CIICAp, Cuernavaca 62209, Morelos, Mexico
[2] Univ Politecn Queretaro, Ingn Redes & Telecomunicac, Queretaro 76240, Mexico
关键词
Optical imaging; Diffraction; Optical sensors; Hyperspectral imaging; Diffraction gratings; Pupils; Imaging; spectral images; diffraction grating; EARTH; FIELD;
D O I
10.1109/ACCESS.2022.3193393
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral imaging (HSI) systems have been demonstrated as a powerful imaging technique due to their high spectral resolution. HSI can obtain the spectrum for each pixel in the image of a scene, a feature that can be exploited to design optical systems with the purpose of analyzing and characterizing objects and identifying processes within the visible electromagnetic spectrum (bandwidth). In this paper, we present an HSI system comprising a diffraction grating placed in the exit pupil of our optical configuration. The spectrum for each pixel associated with the object appears in the first order of diffraction. We used this system to characterize and tune the required spectral band of the image of the captured object obtaining more information than with an optical imaging system. Accordingly, the proposed optical system is suitable to obtain spectral and hyperspectral imaging at low cost compared to an acousto-optic system or other HSI. The scanning system captures hundreds of spectral images associated with the object, obtaining a maximum spectral resolution of 0.26nm or 260 pm for one of our configurations.
引用
收藏
页码:77462 / 77474
页数:13
相关论文
共 47 条
[21]  
Gundogan U., 2021, PROC IEEE INT C IMAG, P2938
[22]  
Ignacio F. L., 2007, THESIS U NACL AUTONO
[23]   DEVELOPMENT OF AN ACOUSTO-OPTIC SYSTEM FOR HYPERSPECTRAL IMAGE SEGMENTATION [J].
Isaza, Cesar ;
Mosquera, Julio M. ;
Gomez-Mendez, Gustavo A. ;
Zavala-De Paz, Jonny P. ;
Karina-Anaya, Ely ;
Rizzo-Sierra, Jose A. ;
Palillero-Sandoval, Omar .
METROLOGY AND MEASUREMENT SYSTEMS, 2019, 26 (03) :517-530
[24]   Detection of pancreatic tumor cell nuclei via a hyperspectral analysis of pathological slides based on stain spectra [J].
Ishikawa, Masahiro ;
Okamoto, Chisato ;
Shinoda, Kazuma ;
Komagata, Hideki ;
Iwamoto, Chika ;
Ohuchida, Kenoki ;
Hashizume, Makoto ;
Shimizu, Akinobu ;
Kobayashi, Naoki .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (09) :4568-4588
[25]   Spectral imaging system analytical model for subpixel object detection [J].
Kerekes, JP ;
Baum, JE .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (05) :1088-1101
[26]   ACOUSTO-OPTICS - A REVIEW OF FUNDAMENTALS [J].
KORPEL, A .
PROCEEDINGS OF THE IEEE, 1981, 69 (01) :48-53
[27]  
Lesaffre M., 2006, IFAC P, V39, P11
[28]   Advances in multispectral and hyperspectral imaging for archaeology and art conservation [J].
Liang, Haida .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2012, 106 (02) :309-323
[29]   Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment [J].
Lorente, D. ;
Aleixos, N. ;
Gomez-Sanchis, J. ;
Cubero, S. ;
Garcia-Navarrete, O. L. ;
Blasco, J. .
FOOD AND BIOPROCESS TECHNOLOGY, 2012, 5 (04) :1121-1142
[30]   Medical hyperspectral imaging: a review [J].
Lu, Guolan ;
Fei, Baowei .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (01)