Accelerated Broadband Spectra Using Transition Dipole Decomposition and Pade Approximants

被引:89
作者
Bruner, Adam [1 ]
LaMaster, Daniel [1 ]
Lopata, Kenneth [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat Technol, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; X-RAY-ABSORPTION; FILTER DIAGONALIZATION METHOD; REAL-TIME; ELECTRON DYNAMICS; RESONANT FREQUENCIES; EXCITATION-ENERGIES; XANES SPECTROSCOPY; QUALITY FACTORS; EXCITED-STATE;
D O I
10.1021/acs.jctc.6b00511
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a method for accelerating the computation of UV-visible and X-ray absorption spectra in large molecular systems using real-time time-dependent density functional theory (TDDFT). This approach is based on deconvolution of the dipole into molecular orbital dipole pairs developed by Repisky, et al. [Repisky et al., J. Chem. Theory Comput. 2015, 11, 980-911] followed by Fade approximants to their Fourier transforms. By combining these two techniques, the required simulation time is reduced by a factor of 5 or more, and moreover, the transition dipoles yield the molecular orbital contributions to each transition, akin to the coefficients in linear-response TDDFT. We validate this method on valence and core-level spectra of gas-phase water and nickel porphyrin, where the results are essentially equivalent to conventional linear response. This approach makes real-time TDDFT competitive against linear response for large molecular and material systems with a high density of states.
引用
收藏
页码:3741 / 3750
页数:10
相关论文
共 67 条
[1]   Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems [J].
Andrade, Xavier ;
Strubbe, David ;
De Giovannini, Umberto ;
Hjorth Larsen, Ask ;
Oliveira, Micael J. T. ;
Alberdi-Rodriguez, Joseba ;
Varas, Alejandro ;
Theophilou, Iris ;
Helbig, Nicole ;
Verstraete, Matthieu J. ;
Stella, Lorenzo ;
Nogueira, Fernando ;
Aspuru-Guzik, Alan ;
Castro, Alberto ;
Marques, Miguel A. L. ;
Rubio, Angel .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (47) :31371-31396
[2]   Real-time linear response for time-dependent density-functional theory [J].
Baer, R ;
Neuhauser, D .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (20) :9803-9807
[3]   A time-dependent semiempirical approach to determining excited states [J].
Bartell, Lizette A. ;
Wall, Michael R. ;
Neuhauser, Daniel .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (23)
[4]   Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT [J].
Brabec, Jiri ;
Lin, Lin ;
Shao, Meiyue ;
Govind, Niranjan ;
Yang, Chao ;
Saad, Yousef ;
Ng, Esmond G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (11) :5197-5208
[5]  
Casida M. E., 1995, RECENT ADV DENSITY F, V1, P155, DOI [10.1142/9789812830586, DOI 10.1142/9789812830586]
[6]   Simulating molecular conductance using real-time density functional theory [J].
Cheng, Chiao-Lun ;
Evans, Jeremy S. ;
Van Voorhis, Troy .
PHYSICAL REVIEW B, 2006, 74 (15)
[7]   ITERATIVE CALCULATION OF A FEW OF LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE REAL-SYMMETRIC MATRICES [J].
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :87-94
[8]   Emergence of Excited-State Plasmon Modes in Linear Hydrogen Chains from Time-Dependent Quantum Mechanical Methods [J].
DePrince, A. Eugene, III ;
Pelton, Matthew ;
Guest, Jeffrey R. ;
Gray, Stephen K. .
PHYSICAL REVIEW LETTERS, 2011, 107 (19)
[9]   Simulation of X-ray absorption spectra with orthogonality constrained density functional theory [J].
Derricotte, Wallace D. ;
Evangelista, Francesco A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (22) :14360-14374
[10]   Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation [J].
Dey, S ;
Mittra, R .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1998, 8 (12) :415-417