Synthesis and hydrogen production kinetics of temperature-responsive aluminum-poly(N-isopropylacrylamide) core-shell nanoparticles

被引:1
作者
Zeng, Wenhui [1 ]
Jelliss, Paul A. [1 ]
Buckner, Steven W. [1 ]
机构
[1] St Louis Univ, Dept Chem, St Louis, MO 63103 USA
关键词
Aluminum nanoparticles; Thermoresponsive polymer; Non-Arrhenius hydrolysis; DELAFOSSITE CUALO2 NANOPARTICLES; ALUMINUM NANOPARTICLES; GOLD NANOPARTICLES; POLY(N-ISOPROPYLACRYLAMIDE) GELS; POLY(METHYL METHACRYLATE); N-ISOPROPYLACRYLAMIDE; TRANSITION; COPOLYMERS; STABILITY; CHEMISTRY;
D O I
10.1016/j.matchemphys.2018.08.081
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report here on the synthesis of air-stable aluminum nanoparticles (Al NPs) capped with a temperature-responsive polymer, poly(N-isopropylacrylamide) (PNIPAM). These core-chell particles display temperature-dependent hydrogen production kinetics upon hydrolysis. Kinetic studies show that the bimolecular rate constant below the critical solution temperature (CST) is 2.85 x 10(-4) L mol(-1) s(-1) (at 20 degrees C), which is nearly twice that of the rate constant (1.6 x 10(-4) L mol(-1) s(-1)) above the CST (at 40 degrees C). This non-Arrhenius behavior is proposed to originate from collapse of the capping layer above the CST which creates a less permeable capping layer. The core-shell nanoparticles were characterized with powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy with total attenuated reflection (FTIR-ATR), and differential scanning calorimetry coupled with thermogravimetric analysis (DSC/TGA). Transmission electron microscopy (TEM) confirms the Al NPs are core-shell structures and the composite particle size distribution ranges from 22 nm to 40 nm.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 47 条
[1]  
Ahmed J, 2015, ACS SYM SER, V1213, P57
[2]   Scalable synthesis of delafossite CuAlO2 nanoparticles for p-type dye-sensitized solar cells applications [J].
Ahmed, Jahangeer ;
Blakely, Colin K. ;
Prakash, Jai ;
Bruno, Shaun R. ;
Yu, Mingzhe ;
Wu, Yiying ;
Poltavets, Viktor V. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 591 :275-279
[3]   Functionalization of Aluminum Nanoparticles Using a Combination of Aryl Diazonium Salt Chemistry and Iniferter Method [J].
Atmane, Yasmine Ait ;
Sicard, Lorette ;
Lamouri, Aazdine ;
Pinson, Jean ;
Sicard, Mickael ;
Masson, Christian ;
Nowak, Sophie ;
Decorse, Philippe ;
Piquemal, Jean-Yves ;
Galtayries, Anouk ;
Mangeney, Claire .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (49) :26000-26006
[4]   Stimuli-responsive polymers and their applications in drug delivery [J].
Bawa, Priya ;
Pillay, Viness ;
Choonara, Yahya E. ;
du Toit, Lisa C. .
BIOMEDICAL MATERIALS, 2009, 4 (02)
[5]   Microwave, Photo- and Thermally Responsive PNIPAm-Gold Nanoparticle Microgels [J].
Budhlall, Bridgette M. ;
Marquez, Manuel ;
Velev, Orlin D. .
LANGMUIR, 2008, 24 (20) :11959-11966
[6]   Capping and Passivation of Aluminum Nanoparticles Using Alkyl-Substituted Epoxides [J].
Chung, Stephen W. ;
Guliants, Elena A. ;
Bunker, Christopher E. ;
Hammerstroem, Douglas W. ;
Deng, Yong ;
Burgers, Mark A. ;
Jelliss, Paul A. ;
Buckner, Steven W. .
LANGMUIR, 2009, 25 (16) :8883-8887
[7]  
COLE CA, 1987, ACS SYM SER, V350, P245
[8]   Sonochemically Assisted Thermal Decomposition of Alane N,N-Dimethylethylamine with Titanium (IV) Isopropoxide in the Presence of Oleic Acid to Yield Air-Stable and Size-Selective Aluminum Core-Shelll Nanoparticles [J].
Fernando, K. A. Shiral ;
Smith, Marcus J. ;
Harruff, Barbara A. ;
Lewis, William K. ;
Guliants, Elena A. ;
Bunker, Christopher E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (02) :500-503
[9]   Powerful Surface Chemistry Approach for the Grafting of Alkyl Multi layers on Aluminum Nanoparticles [J].
Fogliazza, Morgan ;
Sicard, Lorette ;
Decorse, Philippe ;
Chevillot-Biraud, Alexandre ;
Mangeney, Claire ;
Pinson, Jean .
LANGMUIR, 2015, 31 (22) :6092-6098
[10]   Inhibition of oxide formation on aluminum nanoparticles by transition metal coating [J].
Foley, TJ ;
Johnson, CE ;
Higa, KT .
CHEMISTRY OF MATERIALS, 2005, 17 (16) :4086-4091