A new extension of Kannan contractions and related fixed point results

被引:5
作者
Batra, Rakesh [1 ]
Gupta, Ruchi [2 ]
Sahni, Priyanka [2 ,3 ]
机构
[1] Univ Delhi, Hans Raj Coll, Dept Math, Delhi 110007, India
[2] Manav Rachna Univ, Dept Math, Faridabad 121004, Haryana, India
[3] Univ Delhi, Maitreyi Coll, Dept Math, Delhi 110021, India
关键词
Kannan contraction; F-contraction; Complete metric space; Fixed point; F-Kannan contraction; 47H09; 47H10; 54H25;
D O I
10.1007/s41478-020-00241-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this study is to introduce a new generalized family of contraction mapping called F-Kannan contractions. We have stated an error in an earlier attempt made in this direction and have justified this by illustrating it with an example. We claim that our approach is completely analogous to the concept of F-Contractions. A fixed point result have been proved for our extended class of contraction mapping and also for a weaker class of F-Kannan mapping on a non complete metric space. We have also proved that Subrahmanyam's characterization of completeness of a metric space involving Kannan mapping remains valid in case of our extended class of contractions.
引用
收藏
页码:1143 / 1154
页数:12
相关论文
共 20 条
  • [1] Azam A., 2008, The Journal of Nonlinear Sciences and Its Applications, V1, P45, DOI [10.22436/jnsa.001.01.07, DOI 10.22436/JNSA.001.01.07]
  • [2] Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
  • [3] Linking Contractive Self-Mappings and Cyclic Meir-Keeler Contractions with Kannan Self-Mappings
    De la Sen, M.
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [4] Some new results and generalizations in metric fixed point theory
    Du, Wei-Shih
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (05) : 1439 - 1446
  • [5] A Generalization of Kannan's Fixed Point Theorem
    Enjouji, Yusuke
    Nakanishi, Masato
    Suzuki, Tomonari
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2009, : 1 - 10
  • [6] Garai H., 2017, ARXIV170706383V1
  • [7] Goebel K, 1990, TOPICS METRIC FIXED
  • [8] Gornicki J., 2017, Fixed Point Theory Appl., V2017, DOI [10.1186/s13663-017-0602-3, DOI 10.1186/S13663-017-0602-3]
  • [9] Goswami N., 2019, Fixed Point Theory Appl, V2019, DOI [10.1186/s13663-019-0663-6, DOI 10.1186/S13663-019-0663-6]
  • [10] Haokip Nehjamang, 2019, Proyecciones (Antofagasta), V38, P763, DOI 10.22199/issn.0717-6279-2019-04-0050