Machine learning techniques demonstrating individual movement patterns of the vertebral column: the fingerprint of spinal motion

被引:11
作者
Dindorf, Carlo [1 ]
Konradi, Jurgen [2 ]
Wolf, Claudia [2 ]
Taetz, Bertram [3 ]
Bleser, Gabriele [3 ]
Huthwelker, Janine [2 ]
Werthmann, Friederike [4 ]
Drees, Philipp [4 ]
Froehlich, Michael [1 ]
Betz, Ulrich [2 ]
机构
[1] Tech Univ Kaiserslautern, Dept Sports Sci, Kaiserslautern, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys Therapy Prevent & Rehabil, Univ Med Ctr, Mainz, Germany
[3] German Res Ctr Artificial Intelligence, Dept Augmented Vis, Kaiserslautern, Germany
[4] Johannes Gutenberg Univ Mainz, Dept Orthoped & Trauma Surg, Univ Med Ctr, Mainz, Germany
关键词
Siamese neural networks; triplet loss; contrastive loss; surface topography; subject identification; NEURAL-NETWORKS; IDENTIFICATION; CLASSIFICATION; ALGORITHMS; SPEED;
D O I
10.1080/10255842.2021.1981884
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Surface topography systems enable the capture of spinal dynamic movement; however, it is unclear whether vertebral dynamics are unique enough to identify individuals. Therefore, in this study, we investigated whether the identification of individuals is possible based on dynamic spinal data. Three different data representations were compared (automated extracted features using contrastive loss and triplet loss functions, as well as simple descriptive statistics). High accuracies indicated the possible existence of a personal spinal 'fingerprint', therefore enabling subject recognition. The present work forms the basis for an objective comparison of subjects and the transfer of the method to clinical use cases.
引用
收藏
页码:821 / 831
页数:11
相关论文
共 41 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
[Anonymous], 2017, What do we need to build explainable AI systems for the medical domain? (Ml)
[3]  
Betz U., 2017, GAIT POSTURE, V57, P345, DOI [10.1016/j.gaitpost.2017.06.458, DOI 10.1016/J.GAITPOST.2017.06.458]
[4]   Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data [J].
Bhagwat, Nikhil ;
Viviano, Joseph D. ;
Voineskos, Aristotle N. ;
Chakravarty, M. Mallar .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (09)
[5]  
Chicco D, 2021, METHODS MOL BIOL, V2190, P73, DOI 10.1007/978-1-0716-0826-5_3
[6]   General method for automated feature extraction and selection and its application for gender classification and biomechanical knowledge discovery of sex differences in spinal posture during stance and gait [J].
Dindorf, Carlo ;
Konradi, Jurgen ;
Wolf, Claudia ;
Taetz, Bertram ;
Bleser, Gabriele ;
Huthwelker, Janine ;
Drees, Philipp ;
Frohlich, Michael ;
Betz, Ulrich .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2021, 24 (03) :299-307
[7]   Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty [J].
Dindorf, Carlo ;
Teufl, Wolfgang ;
Taetz, Bertram ;
Bleser, Gabriele ;
Froehlich, Michael .
SENSORS, 2020, 20 (16) :1-14
[8]   Predicting body movements for person identification under different walking conditions [J].
Duc-Phong Nguyen ;
Cong-Bo Phan ;
Koo, Seungbum .
FORENSIC SCIENCE INTERNATIONAL, 2018, 290 :303-309
[9]  
Ekinci M., COMPUTATIONAL SCI IT, V3982, P1216
[10]   The influence of gait speed on local dynamic stability of walking [J].
England, Scott A. ;
Granata, Kevin P. .
GAIT & POSTURE, 2007, 25 (02) :172-178