JOINT VALUE DISTRIBUTION THEOREMS FOR THE RIEMANN AND HURWITZ ZETA-FUNCTIONS

被引:6
作者
Laurincikas, Antanas [1 ]
机构
[1] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
关键词
Hurwitz zeta-function; Riemann zeta-function; uniform distribution modulo 1; universality; weak convergence; UNIVERSALITY THEOREM;
D O I
10.17323/1609-4514-2018-18-2-349-366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, a class of functions phi(t) is introduced such that a given pair of analytic functions is approximated simultaneously by shifts zeta (s + i phi(k)), zeta (s + i phi(k), alpha), k is an element of N, of the Riemann and Hurwitz zeta-functions with parameter a for which the set {(logp: p is prime), (log(m + alpha): m is an element of N-0)} is linearly independent over Q. The definition of this class includes an estimate for phi(t) and phi'(t) as well as uniform distribution modulo 1 of the sequence {a phi(k): k is an element of N}, a not equal 0.
引用
收藏
页码:349 / 366
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 1986, THEORY RIEMANN ZETA
[2]  
[Anonymous], MATH ITS APPL
[3]  
[Anonymous], 2007, LECT NOTES MATH
[4]  
Bagchi B., 1981, THESIS
[5]  
Billingsley Patrick, 2013, Convergence of probability measures
[6]   PATH-INTEGRALS AND VORONIN THEOREM ON THE UNIVERSALITY OF THE RIEMANN ZETA FUNCTION [J].
BITAR, KM ;
KHURI, NN ;
REN, HC .
ANNALS OF PHYSICS, 1991, 211 (01) :172-196
[7]   A discrete version of the Mishou theorem [J].
Buivydas, Eugenijus ;
Laurincikas, Antanas .
RAMANUJAN JOURNAL, 2015, 38 (02) :331-347
[8]   A generalized joint discrete universality theorem for the Riemann and Hurwitz zeta-functions [J].
Buivydas, Eugenijus ;
Laurincikas, Antanas .
LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (02) :193-206
[9]  
Cassels J.W.S., 1961, J. Lond. Math. Soc, V36, P177, DOI [10.1112/jlms/s1-36.1.177, DOI 10.1112/JLMS/S1-36.1.177]
[10]   A Mixed Joint Universality Theorem for Zeta-Functions [J].
Genys, J. ;
Macaitiene, R. ;
Rackauskiene, S. ;
Siauciunas, D. .
MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (04) :431-446