Liver vessel segmentation based on extreme learning machine

被引:53
作者
Zeng, Ye Zhan [1 ]
Zhao, Yu Qian [1 ,2 ]
Liao, Miao [1 ]
Zou, Bei Ji [2 ]
Wang, Xiao Fang [3 ]
Wang, Wei [4 ]
机构
[1] Cent S Univ, Dept Biomed & Informat Engn, Changsha 410083, Peoples R China
[2] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
[3] Ecole Cent Lyon, Dept Math & Comp Sci, Ecully, France
[4] Cent S Univ, Xiangya Hosp 3, Changsha 410083, Peoples R China
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2016年 / 32卷 / 05期
基金
中国国家自然科学基金;
关键词
Segmentation; Liver vessels; CT; ELM; TUBULAR STRUCTURES; IMAGES; ENHANCEMENT; FLUX;
D O I
10.1016/j.ejmp.2016.04.003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Liver-vessel segmentation plays an important role in vessel structure analysis for liver surgical planning. This paper presents a liver-vessel segmentation method based on extreme learning machine (ELM). Firstly, an anisotropic filter is used to remove noise while preserving vessel boundaries from the original computer tomography (CT) images. Then, based on the knowledge of prior shapes and geometrical structures, three classical vessel filters including Sato, Frangi and offset medialness filters together with the strain energy filter are used to extract vessel structure features. Finally, the ELM is applied to segment liver vessels from background voxels. Experimental results show that the proposed method can effectively segment liver vessels from abdominal CT images, and achieves good accuracy, sensitivity and specificity. (C) 2016 Associazione Italiana di Fisica Medica Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 50 条
[31]   Parallel extreme learning machine for regression based on MapReduce [J].
He, Qing ;
Shang, Tianfeng ;
Zhuang, Fuzhen ;
Shi, Zhongzhi .
NEUROCOMPUTING, 2013, 102 :52-58
[32]   A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification [J].
Mookiah, Muthu Rama Krishnan ;
Hogg, Stephen ;
MacGillivray, Tom J. ;
Prathiba, Vijayaraghavan ;
Pradeepa, Rajendra ;
Mohan, Viswanathan ;
Anjana, Ranjit Mohan ;
Doney, Alexander S. ;
Palmer, Colin N. A. ;
Trucco, Emanuele .
MEDICAL IMAGE ANALYSIS, 2021, 68
[33]   Machine learning based liver disease diagnosis: A systematic review [J].
Khan, Rayyan Azam ;
Luo, Yigang ;
Wu, Fang-Xiang .
NEUROCOMPUTING, 2022, 468 :492-509
[34]   X-Ray cardiac angiographic vessel segmentation based on pixel classification using machine learning and region growing [J].
Rodrigues, E. O. ;
Rodrigues, L. O. ;
Lima, J. J. ;
Casanova, D. ;
Favarim, F. ;
Dosciatti, E. R. ;
Pegorini, V ;
Oliveira, L. S. N. ;
Morais, F. F. C. .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2021, 7 (05)
[35]   18F-FDG PET-based liver segmentation using deep-learning [J].
Kaneko, Yuta ;
Miwa, Kenta ;
Yamao, Tensho ;
Miyaji, Noriaki ;
Nishii, Ryuichi ;
Yamazaki, Kana ;
Nishikawa, Noriko ;
Yusa, Masanori ;
Higashi, Tatsuya .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2025,
[36]   Hierarchical retinal blood vessel segmentation based on feature and ensemble learning [J].
Wang, Shuangling ;
Yin, Yilong ;
Cao, Guibao ;
Wei, Benzheng ;
Zheng, Yuanjie ;
Yang, Gongping .
NEUROCOMPUTING, 2015, 149 :708-717
[37]   A review on extreme learning machine [J].
Wang, Jian ;
Lu, Siyuan ;
Wang, Shui-Hua ;
Zhang, Yu-Dong .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) :41611-41660
[38]   Functional extreme learning machine [J].
Liu, Xianli ;
Zhou, Guo ;
Zhou, Yongquan ;
Luo, Qifang .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
[39]   Epileptic seizure detection based on the kernel extreme learning machine [J].
Liu, Qi ;
Zhao, Xiaoguang ;
Hou, Zengguang ;
Liu, Hongguang .
TECHNOLOGY AND HEALTH CARE, 2017, 25 :S399-S409
[40]   Walking control of humanoid robot based on extreme learning machine [J].
Yang, Liang ;
Han, Qingtao ;
Deng, Chunjian .
INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2016, 10 (04) :375-388