Representation of moduli spaces of curves and calculation of extremal polynomials

被引:4
作者
Bogatyrëv, AB [1 ]
机构
[1] RAS, Inst Numer Math, Moscow 117901, Russia
关键词
D O I
10.1070/SM2003v194n04ABEH000725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Chebyshev and Zolotarev polynomials are the first ranks of the hierarchy of extremal polynomials, which are typical solutions of problems on the conditional minimization of the uniform norm over a space of polynomials. In the general case such polynomials are connected with hyperelliptic curves the genus of which labels the ranks of the hierarchy. Representations of the moduli spaces of such curves are considered in this paper with applications to the calculation of extremal polynomials. Uniformizing curves by special Schottky groups one obtains effectively computable parametric expressions for extremal polynomials in terms of linear series of Poincare.
引用
收藏
页码:469 / 494
页数:26
相关论文
共 13 条
[1]  
Ahlfors L, 1961, SPACES RIEMANN SURFA
[2]  
Ahlfors L.V., 1966, LECT QUASICONFORMAL
[3]  
BELOKOLOS ED, 1994, ALGEBROGEOMETRIC APP
[4]  
BOBENKO AI, 1987, DOKL AKAD NAUK SSSR+, V295, P268
[5]  
BOGATYREV A, IN PRESS MAT SB
[6]  
Bogatyrev A. B, 2002, MAT SBORNIK, V193, P21, DOI 10.4213/sm698
[7]  
BOGATYREV AB, 1999, MAT SBORNIK, V190, P15
[8]  
Burnside W., 1891, P LOND MATH SOC, V23, P49, DOI DOI 10.1112/PLMS/S1-23.1.49
[9]  
Farkas H. M., 1992, RIEMANN SURFACES
[10]  
GARDINER F.P., 1987, PURE APPL MATH NEW Y