Branes and moduli spaces of Higgs bundles on smooth projective varieties

被引:0
作者
Biswas, Indranil [1 ]
Heller, Sebastian [2 ]
Schaposnik, Laura P. [3 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Leibniz Univ Hannover, Inst Differential Geometry, Welfengarten 1, D-30167 Hannover, Germany
[3] Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USA
关键词
Branes; Connection; Higgs bundle; HyperKahler manifold; Twistor space; FUNDAMENTAL GROUP; DUALITY; REPRESENTATIONS;
D O I
10.1007/s40687-021-00286-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth complex projective variety M and a smooth closed curve X subset of M such that the homomorphism of fundamental groups pi(1)(X) -> pi(1)(M) is surjective, we study the restriction map of Higgs bundles, namely from the Higgs bundles on M to those on X. In particular, we investigate the interplay between this restriction map and various types of branes contained in the moduli spaces of Higgs bundles on M and X. We also consider the setup where a finite group is acting on M via holomorphic automorphisms or anti-holomorphic involutions, and the curve X is preserved by this action. Branes are studied in this context.
引用
收藏
页数:17
相关论文
共 20 条
[1]   Real structures on moduli spaces of Higgs bundles [J].
Baraglia, David ;
Schaposnik, Laura P. .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 20 (03) :525-551
[2]   Higgs Bundles and (A, B, A)-Branes [J].
Baraglia, David ;
Schaposnik, Laura P. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (03) :1271-1300
[3]  
Biswas I., 2008, J RAMANUJAN MATH SOC, V23, P311
[4]   PARABOLIC HIGGS BUNDLES AND Γ-HIGGS BUNDLES [J].
Biswas, Indranil ;
Majumder, Souradeep ;
Wong, Michael Lennox .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 95 (03) :315-328
[5]   ON THE HITCHIN MORPHISM FOR HIGHER-DIMENSIONAL VARIETIES [J].
Chen, T. H. ;
Ngo, B. C. .
DUKE MATHEMATICAL JOURNAL, 2020, 169 (10) :1971-2004
[6]  
CORLETTE K, 1988, J DIFFER GEOM, V28, P361, DOI 10.4310/jdg/1214442469
[7]  
DONALDSON SK, 1987, P LOND MATH SOC, V55, P127
[8]   Branes through finite group actions [J].
Heller, Sebastian ;
Schaposnik, Laura P. .
JOURNAL OF GEOMETRY AND PHYSICS, 2018, 129 :279-293
[9]   STABLE BUNDLES AND INTEGRABLE SYSTEMS [J].
HITCHIN, N .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :91-114
[10]   HYPERKAHLER METRICS AND SUPERSYMMETRY [J].
HITCHIN, NJ ;
KARLHEDE, A ;
LINDSTROM, U ;
ROCEK, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (04) :535-589