Sums of distances to the nearest integer and the discrepancy of digital nets

被引:24
作者
Larcher, G [1 ]
Pillichshammer, F [1 ]
机构
[1] Univ Linz, Inst Anal, A-4040 Linz, Austria
关键词
digital nets; discrepancy; Walsh series analysis; distance to the nearest integer;
D O I
10.4064/aa106-4-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:379 / 408
页数:30
相关论文
共 8 条
[1]   DECREASE OF THE DISCREPANCY OF ANY SERIES ON T [J].
BEJIAN, R .
ACTA ARITHMETICA, 1982, 41 (02) :185-202
[2]  
DECLERCK L, 1986, MONATSH MATH, V101, P261, DOI 10.1007/BF01559390
[3]   Haar function based estimates of the star-discrepancy of plane digital nets [J].
Entacher, K .
MONATSHEFTE FUR MATHEMATIK, 2000, 130 (02) :99-108
[4]   EXTREME AND L2 DISCREPANCIES OF SOME PLANE SETS [J].
HALTON, JH ;
ZAREMBA, SK .
MONATSHEFTE FUR MATHEMATIK, 1969, 73 (04) :316-&
[5]   Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration [J].
Larcher, G ;
Niederreiter, H ;
Schmid, WC .
MONATSHEFTE FUR MATHEMATIK, 1996, 121 (03) :231-253
[6]   Base change problems for generalized Walsh series and multivariate numerical integration [J].
Larcher, G ;
Pirsic, G .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (01) :75-105
[7]   Walsh series analysis of the L2-discrepancy of symmetrisized point sets [J].
Larcher, G ;
Pillichshammer, F .
MONATSHEFTE FUR MATHEMATIK, 2001, 132 (01) :1-18
[8]   POINT SETS AND SEQUENCES WITH SMALL DISCREPANCY [J].
NIEDERREITER, H .
MONATSHEFTE FUR MATHEMATIK, 1987, 104 (04) :273-337