Virasoro constraints and the Chern classes of the Hodge bundle

被引:72
作者
Getzler, E [1 ]
Pandharipande, R
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
[2] Univ Chicago, Chicago, IL 60637 USA
关键词
Gromov-Witten invariants; Virasoro conjecture; topological gravity;
D O I
10.1016/S0550-3213(98)00517-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyse the consequences of the Virasoro conjecture of Eguchi, Hori and Xiong for Gromov-Witten invariants, in the case of zero degree maps to the manifolds P-1 and P-2 (or more generally, smooth projective curves and smooth simply connected projective surfaces). We obtain predictions involving intersections of psi and lambda classes on (M) over bar(g,n). In particular, we show that the Virasoro conjecture for P-2 implies the numerical part of Faber's conjecture on the tautological Chow ring of M-g. (C) 1998 Published by Elsevier Science B.V.
引用
收藏
页码:701 / 714
页数:14
相关论文
共 11 条
[1]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[2]   Quantum cohomology and Virasoro algebra [J].
Eguchi, T ;
Hori, K ;
Xiong, CS .
PHYSICS LETTERS B, 1997, 402 (1-2) :71-80
[3]  
Eguchi T, 1998, NUCL PHYS B, V510, P608, DOI 10.1016/S0550-3213(97)00730-X
[4]  
FABER C, 1996, IN PRESS P EUR ALG G
[5]  
FABER C, 1997, CONJECTURAL DESCRIPT
[6]  
FABER C, UNPUB
[7]  
FABER C, 1998, NONVANISHING RESULT
[8]   INTERSECTION THEORY ON THE MODULI SPACE OF CURVES AND THE MATRIX AIRY FUNCTION [J].
KONTSEVICH, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :1-23
[9]  
LIU XO, MATHAG9806028
[10]   ON THE TAUTOLOGICAL RING OF M(G) [J].
LOOIJENGA, E .
INVENTIONES MATHEMATICAE, 1995, 121 (02) :411-419