Machine Learning-Based Single Cell and Integrative Analysis Reveals That Baseline mDC Predisposition Correlates With Hepatitis B Vaccine Antibody Response

被引:10
作者
Aevermann, Brian D. [1 ]
Shannon, Casey P. [2 ,3 ]
Novotny, Mark [1 ]
Ben-Othman, Rym [4 ,5 ]
Cai, Bing [4 ]
Zhang, Yun [1 ]
Ye, Jamie C. [2 ,3 ]
Kobor, Michael S. [4 ]
Gladish, Nicole [4 ]
Lee, Amy Huei-Yi [6 ]
Blimkie, Travis M. [7 ]
Hancock, Robert E. [7 ]
Llibre, Alba [8 ]
Duffy, Darragh [8 ]
Koff, Wayne C. [9 ]
Sadarangani, Manish [10 ]
Tebbutt, Scott J. [2 ,3 ,11 ]
Kollmann, Tobias R. [4 ,5 ]
Scheuermann, Richard H. [1 ,12 ,13 ]
机构
[1] J Craig Venter Inst, Dept Informat, La Jolla, CA USA
[2] St Pauls Hosp, Prevent Organ Failure PROOF Ctr Excellence, Vancouver, BC, Canada
[3] Univ British Columbia UBC, St Pauls Hosp, Ctr Heart Lung Innovat, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Pediat, Vancouver, BC, Canada
[5] Univ Western Australia, Telethon Kids Inst, Perth Childrens Hosp, Nedlands, WA, Australia
[6] Simon Fraser Univ, Dept Mol Biol & Biochem, Burnaby, BC, Canada
[7] Univ British Columbia, Inst Life Sci, Dept Microbiol & Immunol, Vancouver, BC, Canada
[8] Inst Pasteur, Translat Immunol Lab, Paris, France
[9] Human Vaccines Project, New York, NY USA
[10] BC Childrens Hosp Res Inst, Vaccine Evaluat Ctr, Vancouver, BC, Canada
[11] Univ British Columbia, Div Resp Med, Dept Med, Vancouver, BC, Canada
[12] Univ Calif San Diego, Dept Pathol, San Diego, CA 92103 USA
[13] La Jolla Inst Immunol, Div Vaccine Discovery, La Jolla, CA USA
关键词
dendritic cells; endotypes; vaccines; machine learning; canonical correlation analysis; single cell RNA sequencing; baseline correlates; RNA-SEQ; DENDRITIC CELLS; IMMUNITY; SELECTION; NUCLEI; LEVEL;
D O I
10.3389/fimmu.2021.690470
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Vaccination to prevent infectious disease is one of the most successful public health interventions ever developed. And yet, variability in individual vaccine effectiveness suggests that a better mechanistic understanding of vaccine-induced immune responses could improve vaccine design and efficacy. We have previously shown that protective antibody levels could be elicited in a subset of recipients with only a single dose of the hepatitis B virus (HBV) vaccine and that a wide range of antibody levels were elicited after three doses. The immune mechanisms responsible for this vaccine response variability is unclear. Using single cell RNA sequencing of sorted innate immune cell subsets, we identified two distinct myeloid dendritic cell subsets (NDRG1-expressing mDC2 and CDKN1C-expressing mDC4), the ratio of which at baseline (pre-vaccination) correlated with the immune response to a single dose of HBV vaccine. Our results suggest that the participants in our vaccine study were in one of two different dendritic cell dispositional states at baseline - an NDRG2-mDC2 state in which the vaccine elicited an antibody response after a single immunization or a CDKN1C-mDC4 state in which the vaccine required two or three doses for induction of antibody responses. To explore this correlation further, genes expressed in these mDC subsets were used for feature selection prior to the construction of predictive models using supervised canonical correlation machine learning. The resulting models showed an improved correlation with serum antibody titers in response to full vaccination. Taken together, these results suggest that the propensity of circulating dendritic cells toward either activation or suppression, their "dispositional endotype" at pre-vaccination baseline, could dictate response to vaccination.</p>
引用
收藏
页数:14
相关论文
共 50 条
[1]   A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing [J].
Aevermann, Brian ;
Zhang, Yun ;
Novotny, Mark ;
Keshk, Mohamed ;
Bakken, Trygve ;
Miller, Jeremy ;
Hodge, Rebecca ;
Lelieveldt, Boudewijn ;
Lein, Ed ;
Scheuermann, Richard H. .
GENOME RESEARCH, 2021, 31 (10) :1767-1780
[2]  
Aevermann B, 2017, BIOCOMPUT-PAC SYM, P564, DOI 10.1142/9789813207813_0052
[3]   Cell type discovery using single-cell transcriptomics: implications for ontological representation [J].
Aevermann, Brian D. ;
Novotny, Mark ;
Bakken, Trygve ;
Miller, Jeremy A. ;
Diehl, Alexander D. ;
Osumi-Sutherland, David ;
Lasken, Roger S. ;
Lein, Ed S. ;
Scheuermann, Richard H. .
HUMAN MOLECULAR GENETICS, 2018, 27 (R1) :R40-R47
[4]   Beyond adjuvants: Antagonizing inflammation to enhance vaccine immunity [J].
Alter, Galit ;
Sekaly, Rafick Pierre .
VACCINE, 2015, 33 :B55-B59
[5]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[6]   Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses [J].
Avey, Stefan ;
Cheung, Foo ;
Fermin, Damian ;
Frelinger, Jacob ;
Gaujoux, Renaud ;
Gottardo, Raphael ;
Khatri, Purvesh ;
Kleinstein, Steven H. ;
Kotliarov, Yuri ;
Meng, Hailong ;
Sauteraud, Renan ;
Shen-Orr, Shai S. ;
Tsang, John S. ;
Vallania, Francesco ;
Anguiano, Esperanza ;
Baisch, Jeanine ;
Baldwin, Nicole ;
Belshe, Robert B. ;
Blevins, Tamara P. ;
Chaussabel, Damien ;
Davis, Mark M. ;
Fikrig, Erol ;
Grill, Diane E. ;
Hafler, David A. ;
Henrich, Evan ;
Joshi, Samit R. ;
Kaech, Susan M. ;
Kennedy, Rick B. ;
Mohanty, Subhasis ;
Montgomery, Ruth R. ;
Oberg, Ann L. ;
Obermoser, Gerlinde ;
Ovsyannikova, Inna G. ;
Palucka, A. Karolina ;
Pascual, Virginia ;
Poland, Greg A. ;
Pulendran, Bali ;
Reinherz, Ellis L. ;
Shaw, Albert C. ;
Siconolfi, Barbara ;
Stuart, Kenneth D. ;
Tsang, Sui ;
Ueda, Ikuyo ;
Wilson, Jean ;
Zapata, Heidi J. .
SCIENCE IMMUNOLOGY, 2017, 2 (14)
[7]   Cell type discovery and representation in the era of high-content single cell phenotyping [J].
Bakken, Trygve ;
Cowell, Lindsay ;
Aevermann, Brian D. ;
Novotny, Mark ;
Hodge, Rebecca ;
Miller, Jeremy A. ;
Lee, Alexandra ;
Chang, Ivan ;
McCorrison, Jamison ;
Pulendran, Bali ;
Qian, Yu ;
Schork, Nicholas J. ;
Lasken, Roger S. ;
Lein, Ed S. ;
Scheuermann, Richard H. .
BMC BIOINFORMATICS, 2017, 18
[8]   Transcriptome profiling in blood before and after hepatitis B vaccination shows significant differences in gene expression between responders and non-responders [J].
Bartholomeus, Esther ;
De Neuter, Nicolas ;
Meysman, Pieter ;
Suls, Arvid ;
Keersmaekers, Nina ;
Elias, George ;
Jansens, Hilde ;
Hens, Niel ;
Smits, Evelien ;
Van Tendeloo, Viggo ;
Beutels, Philippe ;
Van Damme, Pierre ;
Ogunjimi, Benson ;
Laukens, Kris ;
Mortier, Geert .
VACCINE, 2018, 36 (42) :6282-6289
[9]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[10]   Systems Biology Methods Applied to Blood and Tissue for a Comprehensive Analysis of Immune Response to Hepatitis B Vaccine in Adults [J].
Ben-Othman, Rym ;
Cai, Bing ;
Liu, Aaron C. ;
Varankovich, Natallia ;
He, Daniel ;
Blimkie, Travis M. ;
Lee, Amy H. ;
Gill, Erin E. ;
Novotny, Mark ;
Aevermann, Brian ;
Drissler, Sibyl ;
Shannon, Casey P. ;
McCann, Sarah ;
Marty, Kim ;
Bjornson, Gordean ;
Edgar, Rachel D. ;
Lin, David Tse Shen ;
Gladish, Nicole ;
Maclsaac, Julia ;
Amenyogbe, Nelly ;
Chan, Queenie ;
Llibre, Alba ;
Collin, Joyce ;
Landais, Elise ;
Le, Khoa ;
Reiss, Samantha M. ;
Koff, Wayne C. ;
Havenar-Daughton, Colin ;
Heran, Manraj ;
Sangha, Bippan ;
Walt, David ;
Krajden, Mel ;
Crotty, Shane ;
Sok, Devin ;
Briney, Bryan ;
Burton, Dennis R. ;
Duffy, Darragh ;
Foster, Leonard J. ;
Mohn, William W. ;
Kobor, Michael S. ;
Tebbutt, Scott J. ;
Brinkman, Ryan R. ;
Scheuermann, Richard H. ;
Hancock, Robert E. W. ;
Kollmann, Tobias R. ;
Sadarangani, Manish .
FRONTIERS IN IMMUNOLOGY, 2020, 11