Construction of Image Datasets for Chemical Experiments and Numerical Assessment of Object Detection Methods

被引:0
作者
不详
机构
关键词
Machine learning; Object detection; Multiple object tracking; Laboratory notebook; Chemical experiment;
D O I
10.2477/jccj.2022-0025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, the remarkable advances in artificial intelligence technology have led to digital transformation (DX) in various fields. The automated construction of laboratory notebook through filming experiments is a promising application of image recognition for chemistry. In this study, we created an image dataset of chemical experiment, which contains 2376 images and consists of 7 classes of objects. Object detection methods and a multiple object tracking method were implemented and assessed using the dataset toward to develop automated laboratory notebook system.
引用
收藏
页码:58 / 60
页数:3
相关论文
共 8 条
[1]  
[Anonymous], About us
[2]  
Bewley A, 2016, IEEE IMAGE PROC, P3464, DOI 10.1109/ICIP.2016.7533003
[3]  
Ding Z., 2022, ICABDE 2021, V201
[4]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[5]   SSD: Single Shot MultiBox Detector [J].
Liu, Wei ;
Anguelov, Dragomir ;
Erhan, Dumitru ;
Szegedy, Christian ;
Reed, Scott ;
Fu, Cheng-Yang ;
Berg, Alexander C. .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :21-37
[6]  
Padilla R, 2020, INT CONF SYST SIGNAL, P237, DOI [10.1109/IWSSIP48289.2020.9145130, 10.1109/iwssip48289.2020.9145130]
[7]  
Redmon J., 2018, arXiv, DOI 10.48550/arXiv.1804.02767
[8]  
Rostianingsih Silvia, 2020, Procedia Computer Science, V171, P2445, DOI 10.1016/j.procs.2020.04.264