Multiple Solutions for a Non-cooperative Elliptic System of Kirchhoff Type Involving p-Biharmonic Operator and Critical Growth

被引:0
作者
Nguyen Thanh Chung [1 ]
机构
[1] Quang Binh Univ, Dept Math, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
关键词
Non-cooperative elliptic system; Kirchhoff type problem; p-Biharmonic operator; Critical exponents; Concentration compactness principle; Limit index theory; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.1007/s10440-019-00237-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of non-cooperative elliptic systems of Kirchhoff type involving p-biharmonic operator and critical growth. With the help of the Limit index theory due to Li (Nonlinear Anal. TMA 30(7):4619-4627, 1997) and the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 32 条
[1]   Existence and Multiplicity of Solutions for Kirchhoff Type Problems Involving p(x)-Biharmonic Operators [J].
Afrouzi, G. A. ;
Mirzapour, M. ;
Chung, N. T. .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (03) :289-303
[2]  
[Anonymous], 2013, APPL ANAL, DOI DOI 10.1080/00036811.2011.602633
[3]   On the existence of stationary solutions for higher-order p-Kirchhoff problems [J].
Autuori, Giuseppina ;
Colasuonno, Francesca ;
Pucci, Patrizia .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (05)
[4]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   MULTIPLICITY OF SOLUTIONS FOR p-BIHARMONIC PROBLEMS WITH CRITICAL GROWTH [J].
Bueno, H. ;
Paes-Leme, L. ;
Rodrigues, H. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (02) :425-442
[7]   Multiple solutions for a system of equations with p-Laplacian [J].
Cai, Shuting ;
Li, Yongqing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) :2504-2521
[8]  
Chabrowski J., 1999, Weak Convergence Methods for Semilinear Elliptic Equations
[9]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[10]   Existence of positive solutions for a nonlocal problem with dependence on the gradient [J].
Chung, Nguyen Thanh .
APPLIED MATHEMATICS LETTERS, 2015, 41 :28-34