Risk prediction scores for acute on chronic liver failure development and mortality

被引:26
作者
Mahmud, Nadim [1 ,2 ]
Hubbard, Rebecca A. [3 ]
Kaplan, David E. [1 ,4 ]
Taddei, Tamar H. [5 ,6 ]
Goldberg, David S. [7 ]
机构
[1] Univ Penn, Perelman Sch Med, Div Gastroenterol, Philadelphia, PA 19104 USA
[2] Univ Penn, Leonard David Inst Hlth Econ, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Ctr Clin Epidemiol & Biostat, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[4] Corporal Michael J Crescenz VA Med Ctr, Dept Med, Philadelphia, PA USA
[5] Yale Univ, Sch Med, Div Digest Dis, New Haven, CT USA
[6] VA Connecticut Healthcare Syst, West Haven, CT USA
[7] Univ Miami, Miller Sch Med, Div Digest Hlth & Liver Dis, Dept Med, Miami, FL 33136 USA
基金
美国国家卫生研究院;
关键词
chronic liver disease; cirrhosis; European Association for the Study of the Liver (EASL); prediction modeling; HEPATOCELLULAR-CARCINOMA; ASSOCIATION; VETERANS; CARE; PERFORMANCE; VALIDATION; CIRRHOSIS; DISEASE;
D O I
10.1111/liv.14328
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims Acute on chronic liver failure (ACLF) causes high short-term mortality in patients with previously stable chronic liver disease. To date there are no models to predict which patients are likely to develop ACLF, and existing models to predict ACLF mortality are based on limited cohorts. We sought to create novel risk prediction scores using a large cohort of patients with cirrhosis. Methods We performed a retrospective cohort study of 74 790 patients with incident cirrhosis in the Veterans Health Administration database using randomized 70% derivation/30% validation sets. ACLF events were identified per the European ACLF criteria. Multivariable logistic regression was used to derive prediction models for developing ACLF at 3, 6 and 12 months, and ACLF mortality at 28 and 90 days. Mortality models were compared to model for end-stage liver disease (MELD), MELD-sodium and the Chronic Liver Failure Consortium (CLIF-C) ACLF score. Results Models for the developing ACLF had very good discrimination (concordance [C] statistics 0.83-0.87) at all timepoints. Models for ACLF mortality also had good discrimination at 28 and 90 days (C-statistics 0.79-0.82), and were superior to MELD, MELD-sodium and the CLIF-C ACLF score. The calibration of the novel models was excellent at all timepoints. Conclusion We have obtained highly-predictive models for developing ACLF, as well as for ACLF short-term mortality in a diverse United States cohort. These may be used to identify outpatients at significant risk of ACLF, which may prompt closer follow-up or early transplant referral, and facilitate decision making for patients with diagnosed ACLF, including escalation of care, expedited transplant evaluation or palliation.
引用
收藏
页码:1159 / 1167
页数:9
相关论文
共 39 条
[1]   Acute-on-chronic liver failure: A new syndrome that will re-classify cirrhosis [J].
Arroyo, Vicente ;
Moreau, Richard ;
Jalan, Rajiv ;
Gines, Pere .
JOURNAL OF HEPATOLOGY, 2015, 62 :S131-S143
[2]   Defining Acute on Chronic Liver Failure: More Elusive Than Ever [J].
Bajaj, Jasmohan S. ;
Wong, Florence ;
Kamath, Patrick S. .
HEPATOLOGY, 2019, 70 (01) :450-451
[3]   Trends in Burden of Cirrhosis and Hepatocellular Carcinoma by Underlying Liver Disease in US Veterans, 2001-2013 [J].
Beste, Lauren A. ;
Leipertz, Steven L. ;
Green, Pamela K. ;
Dominitz, Jason A. ;
Ross, David ;
Ioannou, George N. .
GASTROENTEROLOGY, 2015, 149 (06) :1471-+
[4]   AUDIT-C as a brief screen for alcohol misuse in primary care [J].
Bradley, Katharine A. ;
DeBenedetti, Anna F. ;
Volk, Robert J. ;
Williams, Emily C. ;
Frank, Danielle ;
Kivlahan, Daniel R. .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2007, 31 (07) :1208-1217
[5]   Liver failure determines the outcome in patients of acute-on-chronic liver failure (ACLF): comparison of APASL ACLF research consortium (AARC) and CLIF-SOFA models [J].
Choudhury, A. ;
Jindal, A. ;
Maiwall, R. ;
Sharma, M. K. ;
Sharma, B. C. ;
Pamecha, V. ;
Mahtab, M. ;
Rahman, S. ;
Chawla, Y. K. ;
Taneja, S. ;
Tan, S. S. ;
Devarbhavi, H. ;
Duan, Z. ;
Yu, Chen ;
Ning, Q. ;
Jia, Ji Dong ;
Amarapurkar, D. ;
Eapen, C. E. ;
Goel, A. ;
Hamid, S. S. ;
Butt, A. S. ;
Jafri, W. ;
Kim, D. J. ;
Ghazinian, H. ;
Lee, G. H. ;
Sood, Ajit ;
Lesmana, L. A. ;
Abbas, Z. ;
Shiha, G. ;
Payawal, D. A. ;
Dokmeci, A. K. ;
Sollano, J. D. ;
Carpio, G. ;
Lau, G. K. ;
Karim, F. ;
Rao, P. N. ;
Moreau, R. ;
Jain, P. ;
Bhatia, P. ;
Kumar, G. ;
Sarin, S. K. .
HEPATOLOGY INTERNATIONAL, 2017, 11 (05) :461-471
[6]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22
[7]   EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis [J].
Angeli P. ;
Bernardi M. ;
Villanueva C. ;
Francoz C. ;
Mookerjee R.P. ;
Trebicka J. ;
Krag A. ;
Laleman W. ;
Gines P. .
JOURNAL OF HEPATOLOGY, 2018, 69 (02) :406-460
[8]   Prevalence of probable mental disorders and help-seeking behaviors among veteran and non-veteran community college students [J].
Fortney, John C. ;
Curran, Geoffrey M. ;
Hunt, Justin B. ;
Cheney, Ann M. ;
Lu, Liya ;
Valenstein, Marcia ;
Eisenberg, Daniel .
GENERAL HOSPITAL PSYCHIATRY, 2016, 38 (01) :99-104
[9]   Validation of three coding algorithms to identify patients with end-stage liver disease in an administrative database [J].
Goldberg, D. ;
Lewis, J. D. ;
Halpern, S. D. ;
Weiner, Mark ;
Lo Re, Vincent, III .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 (07) :765-769
[10]   Identifying Barriers to Hepatocellular Carcinoma Surveillance in a National Sample of Patients With Cirrhosis [J].
Goldberg, David S. ;
Taddei, Tamar H. ;
Serper, Marina ;
Mehta, Rajni ;
Dieperink, Eric ;
Aytaman, Ayse ;
Baytarian, Michelle ;
Fox, Rena ;
Hunt, Kristel ;
Pedrosa, Marcos ;
Pocha, Christine ;
Valderrama, Adriana ;
Kaplan, David E. .
HEPATOLOGY, 2017, 65 (03) :864-874