On the multiangle centered discrete fractional Fourier transform

被引:50
|
作者
Vargas-Rubio, JG [1 ]
Santhanam, B
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Dept Elect, Mexico City 02200, DF, Mexico
[2] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
chirp rate estimation; discrete Fourier transform (DFT); discrete fractional Fourier transform (DFRFT); eigenvalues; eigenvectors; fast Fourier transform (FFT); fractional matrix power; Hermite-Gauss functions; multicomponent chirp signals;
D O I
10.1109/LSP.2005.843762
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing versions of the discrete fractional Fourier transform (DFRFT) are based on the discrete Fourier transform (I)FT). These approaches need a full basis of DFT eigenvectors; that serve as discrete versions of Hermite-Gauss functions. In this letter, we define a DFRFT based on a centered version of the DFT (CDFRFT),using eigenvectors derived from the Grunbaum tridiagonal commutor that serve as excellent discrete approximations to the Hermite-Gauss functions. We develop a fast and efficient way to compute the multiangle version of the CDFRFT for a discrete set of angles using the FFT algorithm. We then show that the associated chirp-frequency representation is a useful analysis tool for multicomponent chirp, signals.
引用
收藏
页码:273 / 276
页数:4
相关论文
共 50 条
  • [1] An improved spectrogram using the multiangle centered discrete fractional fourier transform
    Vargas-Rubio, JG
    Santhanam, B
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 505 - 508
  • [2] The centered discrete fractional Fourier transform and linear chirp signals
    Vargas-Rubio, JG
    Santhanam, B
    IEEE 11TH DIGITAL SIGNAL PROCESSING WORKSHOP & 2ND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP, 2004, : 163 - 167
  • [3] Architecture of a configurable Centered Discrete Fractional Fourier Transform processor
    Sinha, Pavel
    Sarkar, Saibal
    Sinha, Amitabha
    Basu, Dhruba
    2007 50TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-3, 2007, : 286 - +
  • [4] Discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 536 - 539
  • [5] The discrete fractional Fourier transform
    Candan, Ç
    Kutay, MA
    Ozaktas, HM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) : 1329 - 1337
  • [6] Discrete fractional Fourier transform
    Candan, Cagatay
    Kutay, M.Alper
    Ozaktas, Haldun M.
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1713 - 1716
  • [7] The discrete fractional Fourier transform
    Candan, C
    Kutay, MA
    Ozaktas, HM
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1713 - 1716
  • [8] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [9] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [10] Discrete and finite fractional Fourier transform
    Wolf, KB
    Group Theory and Numerical Analysis, 2005, 39 : 267 - 276