Prediction of Kapitza resistance at fluid-solid interfaces

被引:29
作者
Alosious, Sobin [1 ,2 ]
Kannam, Sridhar Kumar [2 ]
Sathian, Sarith P. [1 ]
Todd, B. D. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Appl Mech, Chennai 600036, Tamil Nadu, India
[2] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Math, Hawthorn, Vic 3122, Australia
关键词
THERMAL-RESISTANCE; HEAT-TRANSFER; TRANSPORT; DYNAMICS; GRAPHENE; WATER;
D O I
10.1063/1.5126887
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the interfacial heat transfer and thermal resistance at an interface between two dissimilar materials is of great importance in the development of nanoscale systems. This paper introduces a new and reliable linear response method for calculating the interfacial thermal resistance or Kapitza resistance in fluid-solid interfaces with the use of equilibrium molecular dynamics (EMD) simulations. The theoretical predictions are validated against classical molecular dynamics (MD) simulations. MD simulations are carried out in a Lennard-Jones (L-J) system with fluid confined between two solid slabs. Different types of interfaces are tested by varying the fluid-solid interactions (wetting coefficient) at the interface. It is observed that the Kapitza length decreases monotonically with an increasing wetting coefficient as expected. The theory is further validated by simulating under different conditions such as channel width, density, and temperature. Our method allows us to directly determine the Kapitza length from EMD simulations by considering the temperature fluctuation and heat flux fluctuations at the interface. The predicted Kapitza length shows an excellent agreement with the results obtained from both EMD and non-equilibrium MD simulations. Published under license by AIP Publishing.
引用
收藏
页数:10
相关论文
共 48 条
[1]  
[Anonymous], 2013, MOL LIQUIDS, DOI DOI 10.1016/B978-0-12-387032-2.00011-8
[2]   Kapitza resistance at the liquid-solid interface [J].
Barrat, JL ;
Chiaruttini, F .
MOLECULAR PHYSICS, 2003, 101 (11) :1605-1610
[3]   Large slip effect at a nonwetting fluid-solid interface [J].
Barrat, JL ;
Bocquet, L .
PHYSICAL REVIEW LETTERS, 1999, 82 (23) :4671-4674
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   Boundary conditions derived from a microscopic theory of hydrodynamics near solids [J].
Camargo, Diego ;
de la Torre, J. A. ;
Delgado-Buscalioni, Rafael ;
Chejne, Farid ;
Espanol, Pep .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (14)
[6]   Nanoscale hydrodynamics near solids [J].
Camargo, Diego ;
de la Torre, A. ;
Duque-Zumajo, D. ;
Espanol, Pep ;
Delgado-Buscalioni, Rafael ;
Chejne, Farid .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (06)
[7]   Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics [J].
Chalopin, Y. ;
Esfarjani, K. ;
Henry, A. ;
Volz, S. ;
Chen, G. .
PHYSICAL REVIEW B, 2012, 85 (19)
[8]   Enhanced thermal conductance at the graphene-water interface based on functionalized alkane chains [J].
Chen, Shuyu ;
Yang, Ming ;
Liu, Bin ;
Xu, Min ;
Zhang, Teng ;
Zhuang, Bilin ;
Ding, Ding ;
Huai, Xiulan ;
Zhang, Hang .
RSC ADVANCES, 2019, 9 (08) :4563-4570
[9]   Systematic investigation of the misorientation- and temperature-dependent Kapitza resistance in CeO2 [J].
Chernatynskiy, Aleksandr ;
Bai, Xian-Ming ;
Gan, Jian .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 99 :461-469
[10]  
Evans D. J., 2008, STAT MECH NONEQUILIB