Nanofiber induced enhancement of electrical and electrochemical properties in polymer gel electrolytes for application in energy storage devices

被引:10
作者
Borah, Sandeepan [1 ]
Guha, A. K. [2 ]
Saikia, Lakshi [3 ]
Deka, M. [1 ]
机构
[1] Assam Kaziranga Univ, Dept Phys, Jorhat, Assam, India
[2] Cotton Univ, Dept Chem, Gauhati, Assam, India
[3] North East Inst Sci & Technol, CSIR, Mat Sci Div, Jorhat, Assam, India
关键词
Ceramic; Energy storage materials; Polymer elastomers and plastics; Composite materials; Amorphous materials; IONIC-CONDUCTIVITY; COMPOSITE; PMMA; SIO2; PERFORMANCE; CARRAGEENAN; PARTICLES; TRANSPORT;
D O I
10.1016/j.jallcom.2021.161173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, a significant study on ionic conduction properties of novel nanocomposite polymer gel electrolytes (NCPGEs) is carried out using poly (methyl methacrylate) (PMMA) with nanofibers of silica (SiO2) complexed with lithium perchlorate (LiClO4) by combining experimental work and computational modelling. The compositional variation of SiO2 nanofibers in polymer electrolytes induces a visible alteration in different characteristics like ionic conductivity, electrochemical stability, interfacial stability, surface morphology and optical properties. Among all the compositions, NCPGEs containing 5 wt% nanofibers exhibit maximum ionic conductivity of 4.6 x 10-3 Scm-1 at room temperature. Fourier Transform Infrared Spectroscopy (FTIR) has shown a better interaction between lithium ions (Li+) with carbonyl group of PMMA in presence of SiO2 nanofibers. X-ray photoelectron spectroscopy (XPS) has confirmed various interactions among different constituents in NCPGEs. A combined molecular dynamics (MD) simulation and density functional theory (DFT) show a stable interaction between polymer with nanofiber filler and Li salt. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Abdelranek E., 2016, Egypt. J. Basic Appl. Sci, V3, P10, DOI DOI 10.1016/J.EJBAS.2015.06.001
[2]   Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries [J].
Aldalur, Itziar ;
Wang, Xiaoen ;
Santiago, Alexander ;
Goujon, Nicolas ;
Echeverria, Maria ;
Martinez-Ibanez, Maria ;
Piszcz, Michal ;
Howlett, Patrick C. ;
Forsyth, Maria ;
Armand, Michel ;
Zhang, Heng .
JOURNAL OF POWER SOURCES, 2020, 448
[3]   Synthesis of SiO2 Nanostructures Using Sol-Gel Method [J].
Azlina, H. N. ;
Hasnidawani, J. N. ;
Norita, H. ;
Surip, S. N. .
ACTA PHYSICA POLONICA A, 2016, 129 (04) :842-844
[4]   Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery [J].
Baskoro, Febri ;
Wong, Hui Qi ;
Yen, Hung-Ju .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (06) :3937-3971
[5]   Review-Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid [J].
Boaretto, Nicola ;
Meabe, Leire ;
Martinez-Ibanez, Maria ;
Armand, Michel ;
Zhang, Heng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (07)
[6]   Effect of silica nanofiber dispersion on electrochemical properties of cellulose acetate composite gel electrolytes [J].
Borah, Sandeepan ;
Deka, M. .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 252
[7]   Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries [J].
Deka, M. ;
Kumar, A. .
JOURNAL OF POWER SOURCES, 2011, 196 (03) :1358-1364
[8]   Enhanced electrical and electrochemical properties of PMMA-clay nanocomposite gel polymer electrolytes [J].
Deka, M. ;
Kumar, A. .
ELECTROCHIMICA ACTA, 2010, 55 (05) :1836-1842
[9]   Effect of dedoped (insulating) polyaniline nanofibers on the ionic transport and interfacial stability of poly(vinylidene fluoride-hexafluoropropylene) based composite polymer electrolyte membranes [J].
Deka, M. ;
Nath, A. K. ;
Kumar, A. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 327 (1-2) :188-194
[10]   Enhanced ionic conductivity in novel nanocomposite gel polymer electrolyte based on intercalation of PMMA into layered LiV3O8 [J].
Deka, Madhuryya ;
Kumar, Ashok .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (09) :1649-1656