MINIMAL GRAPHS IN Hn x R AND Rn+1

被引:0
作者
Earp, Ricardo Sa [1 ]
Toubiana, Eric [2 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22453900 Rio De Janeiro, Brazil
[2] Univ Paris 07, Inst Mathemat Jussieu, F-75251 Paris 05, France
关键词
Dirichlet problem; minimal equation; vertical graph; Perron process; barrier; convex domain; asymptotic boundary; translation hypersurface; Scherk hypersurface; MEAN-CURVATURE GRAPHS; SURFACES; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct geometric barriers for minimal graphs in H-n x R. We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in H-n extending continuously to the interior of each face, taking infinite boundary data on one face and zero boundary value data on the other faces. In H-n x R, we solve the Dirichlet problem for the vertical minimal equation in a C-0 convex domain Omega subset of H-n taking arbitrarily continuous finite boundary and asymptotic boundary data. We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values +infinity and -infinity on adjacent faces of this polyhedron. We establish analogous results for minimal graphs when the ambient is the Euclidean space Rn+1.
引用
收藏
页码:2373 / 2402
页数:30
相关论文
共 17 条
[1]   COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS [J].
ANDERSON, MT .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :264-290
[2]   COMPLETE MINIMAL VARIETIES IN HYPERBOLIC SPACE [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :477-494
[3]  
BERARD P, ARXIV08083838V1
[4]  
Courant R., 1989, Partial Differential Equations, V2
[5]  
COUTANT A, HYPERSURFACES TYPE S
[6]  
Earp RS, 2008, MATH ANN, V342, P309, DOI 10.1007/s00208-008-0237-0
[7]  
EARP R. SA, 2009, INTRO GEOMETRIE HYPE
[8]   PARABOLIC AND HYPERBOLIC SCREW MOTION SURFACES IN H2 x R [J].
Earp, Ricardo Sa .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 85 (01) :113-143
[9]  
EARP RS, 2000, ASIAN J MATH, V4, P669
[10]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF, V2nd