On improved fractional Sobolev-Poincar, inequalities

被引:24
作者
Dyda, Bartlomiej [1 ]
Ihnatsyeva, Lizaveta [2 ]
Vahakangas, Antti V. [3 ]
机构
[1] Wroclaw Univ Technol, Fac Pure & Appl Math, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Kansas State Univ, Dept Math, 138 Cardwell Hall, Manhattan, KS 66506 USA
[3] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
来源
ARKIV FOR MATEMATIK | 2016年 / 54卷 / 02期
关键词
D O I
10.1007/s11512-015-0227-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a certain improved fractional Sobolev-Poincar, inequality on domains, which can be considered as a fractional counterpart of the classical Sobolev-Poincar, inequality. We prove the equivalence of the corresponding weak and strong type inequalities; this leads to a simple proof of a strong type inequality on John domains. We also give necessary conditions for the validity of an improved fractional Sobolev-Poincar, inequality, in particular, we show that a domain of finite measure, satisfying this inequality and a 'separation property', is a John domain.
引用
收藏
页码:437 / 454
页数:18
相关论文
共 20 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]  
[Anonymous], 1978, Annales de l'institut Fourier
[3]  
[Anonymous], 1996, Function spaces and potential theory, volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
[4]   EXISTENCE FOR NONLOCAL VARIATIONAL PROBLEMS IN PERIDYNAMICS [J].
Bellido, Jose C. ;
Mora-Corral, Carlos .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :890-916
[5]  
BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
[6]  
Buckley S, 1995, MATH RES LETT, V2, P577
[7]   On comparability of integral forms [J].
Dyda, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :564-577
[8]   Characterizations for fractional Hardy inequality [J].
Dyda, Bartlomiej ;
Vahakangas, Antti V. .
ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (02) :173-182
[9]   On a (q, p)-Poincare inequality [J].
Harjulehto, Petteri ;
Hurri-Syrjanen, Ritva .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :61-68
[10]   ON THE (1, p)-POINCARE INEQUALITY [J].
Harjulehto, Petteri ;
Hurri-Syrjanen, Ritva ;
Vahakangas, Antti V. .
ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (03) :905-930