Applications of the maximum principle to a variety of problems involving elliptic and parabolic equations

被引:9
作者
Philippin, GA [1 ]
Vernier-Piro, S
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1K 7P4, Canada
[2] Univ Cagliari, Dipartimento Matemat, I-09123 Cagliari, Italy
关键词
maximum principle; elliptic initial-boundary value problem; parabolic initial-boundary value problem;
D O I
10.1016/S0362-546X(01)00210-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a review of some applications of best possible maximum principles to elliptic and parabolic problems, Moreover, we construct new upper bounds for solutions of a class of parabolic problems in terms of the stress function.
引用
收藏
页码:661 / 679
页数:19
相关论文
共 34 条
[1]  
Friedman A., 1958, PAC J MATH, V8, P201
[2]  
Hopf E., 1927, Sitz Bet Preuss Akad Wissensch, Berlin. Math Phys kl, P147
[3]   POWER CONCAVITY AND BOUNDARY-VALUE PROBLEMS [J].
KENNINGTON, AU .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (03) :687-704
[4]  
MA X, IN PRESS ISOPERIMETR
[5]  
Makar-Limanov LG., 1971, MATH NOTES, V9, P52
[6]  
Miranda C., 1948, GIORN MAT BATT, V78, P97
[7]   A STRONG MAXIMUM PRINCIPLE FOR PARABOLIC EQUATIONS [J].
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1953, 6 (02) :167-177
[8]  
PAYNE L., 1979, NONLINEAR ANAL, V3, P193
[9]  
Payne L.E., 1968, Indian J. Mech. Math, P51
[10]   DECAY BOUNDS FOR SOLUTIONS OF 2ND-ORDER PARABOLIC PROBLEMS AND THEIR DERIVATIVES [J].
PAYNE, LE ;
PHILIPPIN, GA .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (01) :95-110