A hierarchical Single-Atom Ni-N3-C catalyst for electrochemical CO2 reduction to CO with Near-Unity faradaic efficiency in a broad potential range

被引:58
作者
Hua, Wei [1 ,2 ]
Sun, Hao [1 ,2 ]
Lin, Ling [1 ,2 ]
Mu, Qiaoqiao [1 ,2 ]
Yang, Baiyu [1 ,2 ]
Su, Yanhui [1 ,2 ]
Wu, Huirong [1 ,2 ]
Lyu, Fenglei [1 ,2 ]
Zhong, Jun [3 ]
Deng, Zhao [1 ,2 ]
Peng, Yang [1 ,2 ]
机构
[1] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat, Suzhou 215006, Peoples R China
[2] Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
[3] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Single-atom catalyst; Ni-N-3-C; electrocatalytic CO2 reduction; Membrane electrode assembly; Hierarchical porosity; CONVERSION; ELECTROCATALYSTS;
D O I
10.1016/j.cej.2022.137296
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Single atom catalysts have been shown highly efficient in catalyzing electrochemical CO2 reduction, but their large-scale synthesis and stable operation under high current densities are still rare. Herein a simple but robust template method was developed for gram-scale synthesis of single-atom Ni-N-C catalysts, exploiting the natural abundant and low-cost guar gum. Benefiting from its under-coordinated Ni-N-3 configuration to afford high catalytic activity and hierarchical porosity to promote mass/charge transfer, the as-fabricated Ni-N/PC catalyst achieved a low overpotential of 290 mV at 100 mA cm(-2), a near-unity faradaic efficiency in a wide potential range from -0.3 V to -0.8 V, as well as a stable operation for >70 h in a membrane electrode assembly with an extraordinary total energy efficiency of 41.0%. By mass-producing a highly potent single-atom electrocatalyst and demonstrating its stable operation in industrial-relevant conditions, this study paves the way for fulfilling the carbon neutral goal through the carbon-negative CO2RR process.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products [J].
Bao, Haihong ;
Qiu, Yuan ;
Peng, Xianyun ;
Wang, Jia-ao ;
Mi, Yuying ;
Zhao, Shunzheng ;
Liu, Xijun ;
Liu, Yifan ;
Cao, Rui ;
Zhuo, Longchao ;
Ren, Junqiang ;
Sun, Jiaqiang ;
Luo, Jun ;
Sun, Xuping .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[3]   Enhancement of Mass Transfer for Facilitating Industrial-Level CO2 Electroreduction on Atomic Ni-N4 Sites [J].
Chen, Baotong ;
Li, Boran ;
Tian, Ziqi ;
Liu, Wenbo ;
Liu, WenPing ;
Sun, Weiwei ;
Wang, Kang ;
Chen, Liang ;
Jiang, Jianzhuang .
ADVANCED ENERGY MATERIALS, 2021, 11 (40)
[4]   Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO2 [J].
Chen, Kejun ;
Cao, Maoqi ;
Lin, Yiyang ;
Fu, Junwei ;
Liao, Hanxiao ;
Zhou, Yajiao ;
Li, Hongmei ;
Qiu, Xiaoqing ;
Hu, Junhua ;
Zheng, Xusheng ;
Shakouri, Mohsen ;
Xiao, Qunfeng ;
Hu, Yongfeng ;
Li, Jun ;
Liu, Jilei ;
Cortes, Emiliano ;
Liu, Min .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (10)
[5]   Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level [J].
Chen, Zhipeng ;
Zhang, Xinxin ;
Liu, Wei ;
Jiao, Mingyang ;
Mou, Kaiwen ;
Zhang, Xiangping ;
Liu, Licheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) :2349-2356
[6]   Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products [J].
Fan, Lei ;
Xia, Chuan ;
Yang, Fangqi ;
Wang, Jun ;
Wang, Haotian ;
Lu, Yingying .
SCIENCE ADVANCES, 2020, 6 (08)
[7]   Probing the Reaction Mechanism of CO2 Electroreduction over Ag Films via Operando Infrared Spectroscopy [J].
Firet, Nienke J. ;
Smith, Wilson A. .
ACS CATALYSIS, 2017, 7 (01) :606-612
[8]   Transition metal-based catalysts for the electrochemical CO2reduction: from atoms and molecules to nanostructured materials [J].
Franco, Federico ;
Rettenmaier, Clara ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (19) :6884-6946
[9]   Atomically Dispersed Ni-N3 Sites on Highly Defective Micro-Mesoporous Carbon for Superior CO2 Electroreduction [J].
Fu, Xianzhang ;
Zhang, Pianpian ;
Sun, Tingting ;
Xu, Lianbin ;
Gong, Lei ;
Chen, Baotong ;
Xu, Qingmei ;
Zheng, Tianyu ;
Yu, Zonghua ;
Chen, Xin ;
Zhang, Shaolong ;
Hou, Minchen ;
Wang, Hailong ;
Wang, Kang ;
Jiang, Jianzhuang .
SMALL, 2022, 18 (20)
[10]   Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers [J].
Gao, Fei-Yue ;
Bao, Rui-Cheng ;
Gao, Min-Rui ;
Yu, Shu-Hong .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) :15458-15478