LATTICE EFFECT ALGEBRAS DENSELY EMBEDDABLE INTO COMPLETE ONES

被引:0
作者
Riecanova, Zdenka [1 ]
机构
[1] Slovak Univ Technol Bratislava, Dept Math, Fac Elect Engn & Informat Technol, SK-81219 Bratislava, Slovakia
关键词
non-classical logics; orthomodular lattices; effect algebras; MV-algebras; MacNeille completions; ELEMENTS; POSETS;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
An effect algebraic partial binary operation circle plus defined on the underlying set E uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion (E) over cap of E there exists an effect algebraic partial binary operation (circle plus) over cap then (circle plus) over cap need not be an extension of circle plus. Moreover, for an Archimedean atomic lattice effect algebra E we give a necessary and sufficient condition for that (circle plus) over cap existing on (E) over cap is an extension of circle plus defined on E. Further we show that such (circle plus) over cap extending circle plus exists at most one.
引用
收藏
页码:100 / 109
页数:10
相关论文
共 26 条
  • [1] Chang C. C., 1958, Trans. Amer. Math. Soc., V88, P467, DOI [DOI 10.1090/S0002-9947-1958-0094302-9, 10.1090/S0002-9947-1958-0094302-9]
  • [2] Difference posets in the quantum structures background
    Chovanec, F
    Kôpka, F
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (03) : 571 - 583
  • [3] EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS
    FOULIS, DJ
    BENNETT, MK
    [J]. FOUNDATIONS OF PHYSICS, 1994, 24 (10) : 1331 - 1352
  • [4] THE CENTER OF AN EFFECT ALGEBRA
    GREECHIE, RJ
    FOULIS, D
    PULMANNOVA, S
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1995, 12 (01): : 91 - 106
  • [5] S-dominating effect algebras
    Gudder, S
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (03) : 915 - 923
  • [6] Gudder SP, 1998, TATRA MOUNTAINS MATHEMATICAL PUBLICATIONS, VOL 15, 1998, P23
  • [7] Jena G., 1999, BUSEFAL, V80, P24
  • [8] Sharply Dominating MV-Effect Algebras
    Kalina, Martin
    Olejcek, Vladimir
    Paseka, Jan
    Riecanova, Zdenka
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (04) : 1152 - 1159
  • [9] Kalina M, 2010, KYBERNETIKA, V46, P609
  • [10] KALMBACH G, 1998, ORTHOMODULAR LATTICE