Parabolic Harnack, inequality for the heat equation with inverse-square potential

被引:31
作者
Moschini, Luisa [1 ]
Tesei, Alberto [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
D O I
10.1515/FORUM.2007.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A parabolic Harnack inequality for the equation partial derivative(t)u = Delta u + c/vertical bar x vertical bar(2)u (0 < c < co := (n - 2)(2)/4; n >= 3) is proved; in particular, this implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence between the Schrodinger operator -Hu=Delta u+ c/x vertical bar(2)u and the weighted Laplacian Delta(lambda)nu=1/vertical bar x vertical bar(lambda)div(vertical bar x vertical bar(lambda)del nu) when lambda = 2-n+ 2 root c(0)-c.
引用
收藏
页码:407 / 427
页数:21
相关论文
共 30 条
[1]  
ADAMS DR, 1996, FUNCTION SPACES POTE
[2]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[3]  
[Anonymous], 1980, N HOLLAND MATH LIB
[4]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[5]  
BARAS P, 1984, DIFF EQUAT, P31
[6]   Critical heat kernel estimates for Schrodinger operators via Hardy-Sobolev inequalities [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (01) :1-30
[7]  
Brezis H, 1998, B UNIONE MAT ITAL, V1B, P223
[8]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[9]   On a semilinear elliptic equation with inverse-square potential [J].
Brezis, Haim ;
Dupaigne, Louis ;
Tesei, Alberto .
SELECTA MATHEMATICA-NEW SERIES, 2005, 11 (01) :1-7
[10]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978