Enhanced light harvesting in GaAs thin-film solar cells using plasmonic gold (Au) nanoparticle absorbers

被引:6
作者
Prashant, D. V. [1 ]
Agnihotri, Suneet Kumar [1 ]
Samajdar, D. P. [1 ]
机构
[1] Indian Inst Informat Technol, Dept ECE, Design & Mfg, Jbalapur 482005, Madhya Pradesh, India
关键词
GaAs; Au nanoparticles; Nanowire; Thin-film; FDTD; DESIGN;
D O I
10.1016/j.matpr.2022.02.251
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface texturing methods are often used in thin-film solar cells (SCs) to achieve effective photon trapping. However, such approaches have a detrimental impact on cell performance and are not suitable for thin-films. Plasmonic light trapping using metal nanoparticles (NPs) is one of the promising technique for achieving superior optical absorption in thin-film SCs with less material usage. In this article, to improve the optical performance of GaAs thin-film SCs, a uniformly distributed Gold (Au) nanoparticle (NP) array is introduced at the top of transparent indium-tin-oxide (ITO) electrode. The Au NP array functions as an antireflection layer, increasing light harvesting in active layer for both visible and infrared (IR) wavelength regions. By performing 3-D finite-different time-domain (FDTD) analysis, we have presented a comparative optoelectronic study of the GaAs SCs with and without Au NPs. Photovoltaic parameters such as optical absorption (A (lambda)), photogeneration density (G(optical) rate), and photocurrent density (J(sc)) are used to evaluate performance of the structures. The proposed thin-film SCs with Au NPs achieved an optical absorption of 60% (planar) and 77% (NW array) with a remarkable photocurrent of 22.8 mA/cm(2) (planar) and 26.7 mA/cm(2) respectively. Copyright (C) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 1st International Conference on Physics of Materials and Technology.
引用
收藏
页码:709 / 713
页数:5
相关论文
共 21 条
[1]   Performance analysis of ITO-free PEDOT:PSS/InP nanowire hybrid solar cell [J].
Agnihotri, Suneet Kumar ;
Prashant, D. V. ;
Samajdar, D. P. ;
Arefinia, Zahra .
SOLAR ENERGY, 2021, 228 :418-426
[2]   Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells [J].
Akimov, Yuriy A. ;
Koh, Wee Shing .
PLASMONICS, 2011, 6 (01) :155-161
[3]  
[Anonymous], Solar Cell Methodology
[4]   Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells [J].
Basch, A. ;
Beck, F. J. ;
Soederstroem, T. ;
Varlamov, S. ;
Catchpole, K. R. .
APPLIED PHYSICS LETTERS, 2012, 100 (24)
[5]   Light trapping in thin film silicon solar cells via phase separated disordered nanopillars [J].
Donie, Yidenekachew J. ;
Smeets, Michael ;
Egel, Amos ;
Lentz, Florian ;
Preinfalk, Jan B. ;
Mertens, Adrian ;
Smirnov, Vladimir ;
Lemmer, Uli ;
Bittkau, Karsten ;
Gomard, Guillaume .
NANOSCALE, 2018, 10 (14) :6651-6659
[6]   Plasmonic enhanced solar cells: Summary of possible strategies and recent results [J].
Enrichi, F. ;
Quandt, A. ;
Righini, G. C. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :2433-2439
[7]   Colloidal plasmonic back reflectors for light trapping in solar cells [J].
Mendes, Manuel J. ;
Morawiec, Seweryn ;
Simone, Francesca ;
Priolo, Francesco ;
Crupi, Isodiana .
NANOSCALE, 2014, 6 (09) :4796-4805
[8]   Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties [J].
Morawiec, Seweryn ;
Mendes, Manuel J. ;
Mirabella, Salvatore ;
Simone, Francesca ;
Priolo, Francesco ;
Crupi, Isodiana .
NANOTECHNOLOGY, 2013, 24 (26)
[9]   Plasmonic nanoparticle enhanced light absorption in GaAs solar cells [J].
Nakayama, Keisuke ;
Tanabe, Katsuaki ;
Atwater, Harry A. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[10]  
Polman A., 2013, PLASMONIC SOLAR CELL, V16, DOI [10.1364/pv.2010.pwa2, DOI 10.1364/PV.2010.PWA2]