Spatio-Temporal Graph Deep Neural Network for Short-Term Wind Speed Forecasting

被引:364
作者
Khodayar, Mahdi [1 ]
Wang, Jianhui [1 ]
机构
[1] Southern Methodist Univ, Dept Elect Engn, Dallas, TX 75205 USA
关键词
Deep learning; wind speed forecasting; spatio-temporal features; long short-term memory; graph convolutional network; rough set theory; MACHINE;
D O I
10.1109/TSTE.2018.2844102
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind speed forecasting is still a challenge due to the stochastic and highly varying characteristics of wind. In this paper, a graph deep learning model is proposed to learn the powerful spatio-temporal features from the wind speed and wind direction data in neighboring wind farms. The underlying wind farms are modeled by an undirected graph, where each node corresponds to a wind site. For each node, temporal features are extracted using a long short-term memory Network. A scalable graph convolutional deep learning architecture (GCDLA), motivated by the localized first-order approximation of spectral graph convolutions, leverages the extracted temporal features to forecast the wind-speed time series of the whole graph nodes. The proposed GCDLA captures spatial wind features as well as deep temporal features of the wind data at each wind site. To further improve the prediction accuracy and capture robust latent representations, the rough set theory is incorporated with the proposed graph deep network by introducing upper and lower bound parameter approximations in the model. Simulation results show the advantages of capturing deep spatial and temporal interval features in the proposed framework compared to the state-of-the-art deep learning models as well as shallow architectures in the recent literature.
引用
收藏
页码:670 / 681
页数:12
相关论文
共 36 条
[1]  
Abadi M., 2015, TENSORFLOW LARGE SCA, DOI DOI 10.48550/ARXIV.1603.04467
[2]   Short-term wind power forecasting using ridgelet neural network [J].
Amjady, Nima ;
Keynia, Farshid ;
Zareipour, Hamidreza .
ELECTRIC POWER SYSTEMS RESEARCH, 2011, 81 (12) :2099-2107
[3]  
[Anonymous], IEEE T SUSTAIN ENERG
[4]   Long-Term Wind Speed Forecasting and General Pattern Recognition Using Neural Networks [J].
Azad, Hanieh Borhan ;
Mekhilef, Saad ;
Ganapathy, Vellapa Gounder .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2014, 5 (02) :546-553
[5]   Locally recurrent neural networks for long-term wind speed and power prediction [J].
Barbounis, TG ;
Theocharis, JB .
NEUROCOMPUTING, 2006, 69 (4-6) :466-496
[6]   AWNN-Assisted Wind Power Forecasting Using Feed-Forward Neural Network [J].
Bhaskar, Kanna ;
Singh, S. N. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2012, 3 (02) :306-315
[7]   Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks [J].
Cadenas, Erasmo ;
Rivera, Wilfrido .
RENEWABLE ENERGY, 2009, 34 (01) :274-278
[8]   Forecasting wind speed with recurrent neural networks [J].
Cao, Qing ;
Ewing, Bradley T. ;
Thompson, Mark A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) :148-154
[9]  
Chang W., 2014, J POWER ENERGY ENG, V2, P161, DOI DOI 10.4236/JPEE.2014.24023
[10]   Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction [J].
Chen, Niya ;
Qian, Zheng ;
Nabney, Ian T. ;
Meng, Xiaofeng .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (02) :656-665