On the growth of powers of operators with spectrum contained in Cantor sets

被引:2
作者
Agrafeuil, C [1 ]
机构
[1] Univ Bordeaux 1, CNRS, UMR 5467, Lab Bordelais Anal & Geometrie LaBAG, F-33405 Talence, France
关键词
operators; Beurling algebra; spectral synthesis; perfect symmetric set;
D O I
10.1512/iumj.2005.54.2657
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For xi is an element of(0, 1/2), we denote by E-xi the perfect symmetric set associated to, that is, E xi = {exp (2i pi(1 - xi) (n=1)Sigma(+infinity) epsilon(n)xi(n-1)) : epsilon(n) = 0 or 1 ( n >= 1)}. Let s be a nonnegative real number, and T be an invertible bounded operator on a Banach space with spectrum included in E. We show that if parallel to T(n)parallel to = O(n(S)), n -> +infinity, parallel to T(-n)parallel to = O(e(n beta)), n -> +infinity for some beta < [log(1/xi) - log2]/[2log(1/xi) - log2] then for every epsilon > 0, T satisfies the stronger property parallel to T(-n)parallel to = O(n(s+1/2+epsilon)), n -> +infinity. This result is a particular case of a more general result concerning operators with spectrum satisfying some geometrical conditions.
引用
收藏
页码:1473 / 1481
页数:9
相关论文
共 13 条
[1]   Closed ideas of certain Beurling algebras and application to operators at a countable spectrum [J].
Agrafeuil, C .
STUDIA MATHEMATICA, 2005, 167 (02) :133-151
[2]   Biinvariants subspaces for some weighted spaces [J].
El-Fallah, O ;
Kellay, K .
ANNALES DE L INSTITUT FOURIER, 1998, 48 (05) :1543-+
[3]  
ESTERLE J, 1994, J REINE ANGEW MATH, V450, P43
[4]   ON CONTRACTIONS WITH SPECTRUM CONTAINED IN THE CANTOR SET [J].
ESTERLE, J ;
ZARRABI, M ;
RAJOELINA, M .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 117 :339-343
[5]   THEOREMS OF KATZNELSON-TZAFRIRI TYPE FOR CONTRACTIONS [J].
ESTERLE, J ;
STROUSE, E ;
ZOUAKIA, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 94 (02) :273-287
[6]  
Hoffman K, 1962, PRENTICE HALL SERIES
[7]  
KAHANE JP, 1970, ERGEBNISSE MATH IHRE, V50
[8]  
KAHANE JP, 1963, ACTUALITES SCI IND
[9]   Contractions and hyperdistributions with carleson set spectrum [J].
Kellay, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 :185-196