Re-dispersible Li+ and Eu3+ co-doped CdS nanoparticles:: Luminescence studies

被引:36
作者
Gajbhiye, N. S. [2 ]
Ningthoujam, Raghumani Singh [1 ]
Ahmed, Asar [2 ]
Panda, D. K. [2 ]
Umare, S. S. [3 ]
Sharma, S. J. [4 ]
机构
[1] Bhabha Atom Res Ctr, Div Chem, Bombay 400085, Maharashtra, India
[2] Indian Inst Technol, Dept Chem, Kanpur 208016, Uttar Pradesh, India
[3] Visvesvaraya Natl Inst Technol, Dept Chem, Nagpur 440011, Maharashtra, India
[4] SK Porwal Coll, Dept Elect, Nagpur 441002, Maharashtra, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2008年 / 70卷 / 02期
关键词
semiconductor; luminescence; lanthanide ions; nanoparticles; re-dispersible;
D O I
10.1007/s12043-008-0050-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Re-dispersible CdS, 5 at.% Eu3+-doped CdS, 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS nanoparticles in organic solvent are prepared by urea hydrolysis in ethylene glycol medium at a low temperature of 170 degrees C. CdS nanoparticles have spherical shape with a diameter of similar to 80 nm. The asymmetric ratio (A(21)) of the integrated intensities of the electrical dipole transition to the magnetic dipole transition for 5 at.% Eu3+-doped CdS is found to be 3.8 and this ratio is significantly decreased for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS (A(21) = 2.6). It establishes that the symmetry environment of Eu3+ ion is more favored by Li-doping. Extra peak at 550 nm (green emission) could be seen for 2 and 5 at.% Eu3+ co-doped CdS. Also, the significant energy transfer from host CdS to Eu3+ is found for 5 at.% Eu3+-doped CdS compared to that for 2 at.% Li+ and 5 at.% Eu3+ co-doped CdS.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 24 条
[1]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Dual-functional polymeric waveguide with optical amplification and electro-optic modulation [J].
An, DC ;
Yue, ZZ ;
Chen, RT .
APPLIED PHYSICS LETTERS, 1998, 72 (22) :2806-2807
[4]   Photoluminescence of polycrystalline zinc oxide co-activated with trivalent rare earth ions and lithium. Insertion of rare-earth ions into zinc oxide [J].
Bachir, S ;
Azuma, K ;
Kossanyi, J ;
Valat, P ;
RonfardHaret, JC .
JOURNAL OF LUMINESCENCE, 1997, 75 (01) :35-49
[5]   Photoluminescence characteristics of Li-doped Y2O3:Eu3+ thin film phosphors [J].
Bae, JS ;
Kim, SB ;
Jeong, JH ;
Park, JC ;
Kim, DK ;
Byeon, SH ;
Yi, SS .
THIN SOLID FILMS, 2005, 471 (1-2) :224-229
[6]   On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals [J].
Bol, AA ;
van Beek, R ;
Meijerink, A .
CHEMISTRY OF MATERIALS, 2002, 14 (03) :1121-1126
[7]   Factors influencing the passivation of US quantum dots embedded in silica glass [J].
Chahboun, A ;
Rolo, AG ;
Filonovich, SA ;
Gomes, K .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (10) :1413-1419
[8]   Solvothermal synthesis and photoluminescence properties of single-crystal Mn2+ doped US nanowires [J].
Cheng, CW ;
Xu, GY ;
Zhang, HQ ;
Wang, H ;
Cao, JM ;
Ji, HM .
MATERIALS CHEMISTRY AND PHYSICS, 2006, 97 (2-3) :448-451
[9]   Water-soluble CdSe and CdSe/CdS nanocrystals: A greener synthetic route [J].
Deng, Da-Wei ;
Yu, Jun-Sheng ;
Pan, Yi .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 299 (01) :225-232
[10]   Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA [J].
Fuentes, M ;
Mateo, C ;
Rodriguez, A ;
Casqueiro, M ;
Tercero, JC ;
Riese, HH ;
Fernández-Lafuente, R ;
Guisán, JM .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (08) :1574-1580