Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

被引:13
作者
Huang, Hai [1 ,2 ,3 ]
Zheng, Anmin [1 ,2 ]
Gao, Guoying [1 ,2 ]
Yao, Kailun [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Hubei, Peoples R China
[3] Yangtze Univ, Sch Phys & Optoelect Engn, Jingzhou 434023, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene nanoribbon; First-principles; Half-metal; Thermal spin transport; Magnetoresistance; SCANNING TUNNELING MICROSCOPE; CARBON NANOTUBES; CALORITRONICS; GRAPHITE;
D O I
10.1016/j.jmmm.2017.10.087
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The twoprobe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spinfiltering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 x 10(10)% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:522 / 529
页数:8
相关论文
共 46 条
[1]  
Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/nmat3301, 10.1038/NMAT3301]
[2]   Graphene Versus Carbon Nanotubes in Electronic Devices [J].
Biswas, Chandan ;
Lee, Young Hee .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) :3806-3826
[3]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[4]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[5]   First-principles study of spin-dependent thermoelectric properties of half-metallic Heusler thin films between platinum leads [J].
Comtesse, Denis ;
Geisler, Benjamin ;
Entel, Peter ;
Kratzer, Peter ;
Szunyogh, Laszlo .
PHYSICAL REVIEW B, 2014, 89 (09)
[6]   Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron-Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response [J].
Du, Aijun ;
Sanvito, Stefano ;
Li, Zhen ;
Wang, Dawei ;
Jiao, Yan ;
Liao, Ting ;
Sun, Qiao ;
Ng, Yun Hau ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4393-4397
[7]   Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite [J].
Endo, M ;
Hayashi, T ;
Hong, SH ;
Enoki, T ;
Dresselhaus, MS .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (11) :5670-5674
[8]   Spin-dependent Seebeck Effect, Thermal Colossal Magnetoresistance and Negative Differential Thermoelectric Resistance in Zigzag Silicene Nanoribbon Heterojunciton [J].
Fu, Hua-Hua ;
Wu, Dan-Dan ;
Zhang, Zu-Quan ;
Gu, Lei .
SCIENTIFIC REPORTS, 2015, 5
[9]   Atomically Thin B doped g-C3N4 Nanosheets: High-Temperature Ferromagnetism and calculated Half-Metallicity [J].
Gao, Daqiang ;
Liu, Yonggang ;
Liu, Peitao ;
Si, Mingsu ;
Xue, Desheng .
SCIENTIFIC REPORTS, 2016, 6
[10]   Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: The D03-type Heusler alloys [J].
Gao, G. Y. ;
Yao, Kai-Lun .
APPLIED PHYSICS LETTERS, 2013, 103 (23)