"Heterogeneity within Order" in Metal-Organic Frameworks

被引:453
|
作者
Furukawa, Hiroyasu [1 ,2 ,3 ]
Mueller, Ulrich [4 ]
Yaghi, Omar M. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Div Mat Sci, Berkeley, CA 94720 USA
[2] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA
[3] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia
[4] BASF SE, Chem Res & Engn, D-67056 Ludwigshafen, Germany
关键词
defects; heterogeneity; industrial chemistry; metal-organic frameworks; secondary building units; ZEOLITIC IMIDAZOLATE FRAMEWORKS; FUNCTIONAL-GROUPS; CARBON-DIOXIDE; THIN-FILMS; COORDINATION COPOLYMER; SELECTIVE CAPTURE; BUILDING UNITS; SURFACE-AREA; PORE-SIZE; DESIGN;
D O I
10.1002/anie.201410252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.
引用
收藏
页码:3417 / 3430
页数:14
相关论文
共 50 条
  • [21] Encapsulation of Metal Nanoparticles within Metal-Organic Frameworks for the Reduction of Nitro Compounds
    Navalon, Sergio
    Alvaro, Mercedes
    Dhakshinamoorthy, Amarajothi
    Garcia, Hermenegildo
    MOLECULES, 2019, 24 (17):
  • [22] Metal-Organic Frameworks: From Ambient Green Synthesis to Applications
    Dai, Shan
    Tissot, Antoine
    Serre, Christian
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2021, 94 (11) : 2623 - 2636
  • [23] Postsynthetic Modification of Metal-Organic Frameworks through Click Chemistry
    Gui, Bo
    Meng, Xiangshi
    Xu, Hai
    Wang, Cheng
    CHINESE JOURNAL OF CHEMISTRY, 2016, 34 (02) : 186 - 190
  • [24] Targeted Manipulation of Metal-Organic Frameworks To Direct Sorption Properties
    Schneemann, Andreas
    Henke, Sebastian
    Schwedler, Inke
    Fischer, Roland A.
    CHEMPHYSCHEM, 2014, 15 (05) : 823 - 839
  • [25] Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks
    Deng, Hexiang
    Doonan, Christian J.
    Furukawa, Hiroyasu
    Ferreira, Ricardo B.
    Towne, John
    Knobler, Carolyn B.
    Wang, Bo
    Yaghi, Omar M.
    SCIENCE, 2010, 327 (5967) : 846 - 850
  • [26] Metal-Organic Frameworks as Electrocatalysts
    Peng, Yong
    Sanati, Soheila
    Morsali, Ali
    Garcia, Hermenegildo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (09)
  • [27] Docking in Metal-Organic Frameworks
    Li, Qiaowei
    Zhang, Wenyu
    Miljanic, Ognjen S.
    Sue, Chi-Hau
    Zhao, Yan-Li
    Liu, Lihua
    Knobler, Carolyn B.
    Stoddart, J. Fraser
    Yaghi, Omar M.
    SCIENCE, 2009, 325 (5942) : 855 - 859
  • [28] Gyroidal Metal-Organic Frameworks
    Zhou, Xiao-Ping
    Li, Mian
    Liu, Jie
    Li, Dan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (01) : 67 - 70
  • [29] Defective Metal-Organic Frameworks
    Dissegna, Stefano
    Epp, Konstantin
    Heinz, Werner R.
    Kieslich, Gregor
    Fischer, Roland A.
    ADVANCED MATERIALS, 2018, 30 (37)
  • [30] Hierarchy in Metal-Organic Frameworks
    Feng, Liang
    Wang, Kun-Yu
    Willman, Jeremy
    Zhou, Hong-Cai
    ACS CENTRAL SCIENCE, 2020, 6 (03) : 359 - 367