"Heterogeneity within Order" in Metal-Organic Frameworks

被引:453
|
作者
Furukawa, Hiroyasu [1 ,2 ,3 ]
Mueller, Ulrich [4 ]
Yaghi, Omar M. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Chem, Div Mat Sci, Berkeley, CA 94720 USA
[2] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA
[3] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia
[4] BASF SE, Chem Res & Engn, D-67056 Ludwigshafen, Germany
关键词
defects; heterogeneity; industrial chemistry; metal-organic frameworks; secondary building units; ZEOLITIC IMIDAZOLATE FRAMEWORKS; FUNCTIONAL-GROUPS; CARBON-DIOXIDE; THIN-FILMS; COORDINATION COPOLYMER; SELECTIVE CAPTURE; BUILDING UNITS; SURFACE-AREA; PORE-SIZE; DESIGN;
D O I
10.1002/anie.201410252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) are constructed by linking inorganic units with organic linkers to make extended networks. Though more than 20000 MOF structures have been reported most of these are ordered and largely composed of a limited number of different kinds building units, and very few have multiple different building units (heterogeneous). Although heterogeneity and multiplicity is a fundamental characteristic of biological systems, very few synthetic materials incorporate heterogeneity without losing crystalline order. Thus, the question arises: how do we introduce heterogeneity into MOFs without losing their ordered structure? This Review outlines strategies for varying the building units within both the backbone of the MOF and its pores to produce the heterogeneity that is sought after. The impact this heterogeneity imparts on the properties of a MOF is highlighted. We also provide an update on the MOF industry as part of this themed issue for the 150th anniversary of BASF.
引用
收藏
页码:3417 / 3430
页数:14
相关论文
共 50 条
  • [1] Heterogeneity within Order in Metal-Organic Frameworks
    Yaghi, Omar M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C2 - C2
  • [2] Metal-organic frameworks with multicomponents in order
    Pang, Qingqing
    Tu, Binbin
    Li, Qiaowei
    COORDINATION CHEMISTRY REVIEWS, 2019, 388 : 107 - 125
  • [3] Reticular Chemistry and Metal-Organic Frameworks for Clean Energy
    Yaghi, Omar M.
    Li, Qiaowei
    MRS BULLETIN, 2009, 34 (09) : 682 - 690
  • [4] Metal-Organic Frameworks for Methane Storage
    Wang, Xuan
    Fordham, Stephen
    Zhou, Hong-Cai
    NANOMATERIALS FOR SUSTAINABLE ENERGY, 2015, 1213 : 173 - 191
  • [5] Heterogeneity within Order in Crystals of a Porous Metal-Organic Framework
    Choi, Kyung Min
    Jeon, Hyung Joon
    Kang, Jeung Ku
    Yaghi, Omar M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) : 11920 - 11923
  • [6] Switching in Metal-Organic Frameworks
    Bigdeli, Fahime
    Lollar, Christina T.
    Morsali, Ali
    Zhou, Hong-Cai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (12) : 4652 - 4669
  • [7] Thermodynamics of metal-organic frameworks
    Wu, Di
    Navrotsky, Alexandra
    JOURNAL OF SOLID STATE CHEMISTRY, 2015, 223 : 53 - 58
  • [8] Metal-Organic Frameworks for Catalysis
    Bhattacharjee, Samiran
    Lee, Yu-Ri
    Puthiaraj, Pillaiyar
    Cho, Sung-Min
    Ahn, Wha-Seung
    CATALYSIS SURVEYS FROM ASIA, 2015, 19 (04) : 203 - 222
  • [9] Recent Progress of Metal-Organic Frameworks and Metal-Organic Frameworks-Based Heterostructures as Photocatalysts
    Khan, Mohammad Mansoob
    Rahman, Ashmalina
    Matussin, Shaidatul Najihah
    NANOMATERIALS, 2022, 12 (16)
  • [10] Porous metal-organic frameworks for hydrogen storage
    Zhao, Dian
    Wang, Xinxin
    Yue, Lianglan
    He, Yabing
    Chen, Banglin
    CHEMICAL COMMUNICATIONS, 2022, 58 (79) : 11059 - 11078