Automatic gradient threshold determination for edge detection

被引:41
作者
Henstock, PV
Chelberg, DM
机构
[1] School of Electrical Engineering, Purdue University, West Lafayette
基金
美国国家科学基金会;
关键词
D O I
10.1109/83.499917
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a method to automatically find gradient thresholds to separate edge from nonedge pixels. A statistical model that is the weighted smm of two gamma densities corresponding to edge and nonedge pixels is used to identify a threshold. Results closely match human perceptual thresholds even under low signal-to-noise ratio (SNR) levels.
引用
收藏
页码:784 / 787
页数:4
相关论文
共 18 条
[1]   QUANTITATIVE DESIGN AND EVALUATION OF ENHANCEMENT-THRESHOLDING EDGE DETECTORS [J].
ABDOU, IE ;
PRATT, WK .
PROCEEDINGS OF THE IEEE, 1979, 67 (05) :753-763
[2]  
Ballard D.H., 1982, Computer Vision
[3]  
Casella George, 2021, STAT INFERENCE
[4]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[5]  
HORN BV, 1985, ROBOT VISION
[6]   A NEW METHOD FOR GRAY-LEVEL PICTURE THRESHOLDING USING THE ENTROPY OF THE HISTOGRAM [J].
KAPUR, JN ;
SAHOO, PK ;
WONG, AKC .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1985, 29 (03) :273-285
[7]   EDGE EVALUATION USING LOCAL EDGE COHERENCE [J].
KITCHEN, L ;
ROSENFELD, A .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1981, 11 (09) :597-605
[8]   HIERARCHICAL EDGE-DETECTION [J].
MCLEAN, GF ;
JERNIGAN, ME .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1988, 44 (03) :350-366
[9]  
POMERANTZ JR, 1986, HDB PERCEPTION HUMAN, V2
[10]  
Press W. H., 1992, Numerical recipes in C++: The Art of Scientific Computing, V2nd