Reinforcement distribution for fuzzy classifiers: a methodology to extend crisp algorithms

被引:1
作者
Bonarini, A [1 ]
机构
[1] Politecn Milan, Dept Elect & Comp Engn, PM AI & Robot Project, I-20133 Milan, Italy
来源
1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS | 1998年
关键词
Learning Classifier Systems; Reinforcement Learning; Fuzzy Classifier Systems; Q-learning; TD-lambda;
D O I
10.1109/ICEC.1998.700130
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy Classifier Systems (FCS) implement a mapping fr om real numbers to real numbers, through fuzzy interpretation of input and output. Reinforcement Learning (RL) algorithms can be succesfully applied to develop learning FCS analogously to what can be done with Learning Classifier Systems (LCS). We motivate this approach and we present; a methodology to extend straightforwardly reinforcement distribution algorithms originally designed for crisp input. and output to fully exploit the features of FCS.
引用
收藏
页码:699 / 704
页数:6
相关论文
empty
未找到相关数据